## LEGENDREAN CONTACT GEOMETRY: PARABOLIC GEOMETRY OF TYPE $(A_{n+1}, P_{1,n+1})$

#### TRAVIS WILLSE

#### DO NOT DISTRIBUTE

#### 1. Some geometry

Let  $(M; \mathbf{E}, \mathbf{F})$  be a Legendrean contact geometry of dimension 2n + 1.

Denote  $\mathbf{H} := \mathbf{E} \oplus \mathbf{F}$  and  $\mathbf{Q} := TM/\mathbf{H}$ , and let  $q : TM \to \mathbf{Q}$  denote the canonical projection. Let  $\mathcal{L} : \mathbf{E} \times \mathbf{F} \to \mathbf{Q}$  denote the Levi bracket component associated to  $\mathfrak{g}_{-1}^{\mathbf{E}} \times \mathfrak{g}_{-1}^{\mathbf{F}} \to \mathfrak{g}_{-2}$ , namely,  $\mathcal{L}(\xi_p, \eta_p) = q([\xi, \eta]_p)$ . Likewise, the Levi bracket component  $\mathfrak{g}_{-1}^{\mathbf{E}} \times \mathfrak{g}_{+2} \to \mathfrak{g}_{+1}^{\mathbf{F}}$  induces an isomorphism  $\mathbf{E} \otimes \mathbf{Q}^* \cong \mathbf{F}^*$ , and tensoring with  $\mathbf{Q}$  gives  $\mathbf{E} \cong \mathbf{F}^* \otimes \mathbf{Q} \cong \mathbf{F}^*(1,1)$ .

### 2. Some key $P_{1,n+1}$ -representations

We have

We denote 
$$\mathcal{E}(a,b) := \overset{a}{\times} \overset{0}{\circ} \overset{0}{\circ} \overset{b}{\circ} \overset{b}{\times}$$
. Then, 
$$\mathcal{E}(+1,+1) = \mathbf{Q}$$
 
$$\mathcal{E}(-1,-1) = \mathbf{Q}^*$$
 
$$\mathcal{E}((n+2)n,0) = (\wedge^n \mathbf{E})^{\otimes (n+1)} \otimes (\wedge^n \mathbf{F})$$
 
$$\mathcal{E}(0,(n+2)n) = (\wedge^n \mathbf{E}) \otimes (\wedge^n \mathbf{F})^{\otimes (n+1)}.$$

The bigrading element is

for  $n \geq 3$ , and for n = 1, 2 it is

$$\overset{a}{\times} \overset{b}{\longrightarrow} \overset{c}{\times} \mapsto (-\frac{1}{4}(3a+2b+c), -\frac{1}{4}(a+2b+3c)), \qquad \overset{a}{\times} \overset{b}{\longrightarrow} \mapsto (-\frac{1}{3}(2a+b), -\frac{1}{3}(a+2b)).$$

#### 3. Index notation

We use the index notation from Cap & Slovak, § 5.2.15: We use lowercase Greek letters,  $\alpha, \beta, \gamma, \ldots$ , for indices on **E**, and write  $\xi^{\alpha} \in \Gamma(\mathbf{E})$  and  $\eta_{\alpha} \in \Gamma(\mathbf{E}^*)$ . We use barred lowercase Greek letters,  $\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \ldots$ , for indices on **F**, and write  $\xi^{\bar{\alpha}} \in \Gamma(\mathbf{F})$  and  $\eta_{\bar{\alpha}} \in \Gamma(\mathbf{F}^*)$ .

We use lozenges,  $\Diamond, \blacklozenge$ , for indices on  $\mathbf{Q}$ , and write  $\xi^{\Diamond} \in \Gamma(\mathbf{Q})$  and  $\xi_{\Diamond} \in \Gamma(\mathbf{Q}^*)$ . When it does not result in ambiguity, we sometimes suppress a lozenge index.

Using the isomorphism  $\mathbf{E} \cong \mathbf{F}^*(1,1)$  and its dual map we can change the position and barredness of an index at the cost of a symmetric change of biweight; we denote these isomorphisms  $\mathcal{L}_{\alpha\bar{\beta}}^{\ \ \ \ }$  (or  $\mathcal{L}_{\alpha\bar{\beta}}^{\ \ \ \ }$ ) and  $\mathcal{L}^{\alpha\bar{\beta}}_{\ \ \ \ \ }$  (or  $\mathcal{L}^{\alpha\bar{\beta}}_{\alpha\bar{\beta}}$ ). In particular, we can realize the isomorphism  $\mathrm{End}(\mathbf{E}) \cong \mathrm{End}(\mathbf{F})$  via  $\phi^{\alpha}{}_{\beta} \mapsto \phi_{\bar{\alpha}}^{\ \bar{\beta}}$ .

#### 4. Integrable second-order systems of PDEs

Integrable Legendrean contact geometries are locally realizable as (integrable) systems of second-order PDEs, that is, integrable PDE systems of the form

$$u_{x^i x^j} = f_{ij}(x^k, (x^k)')$$

(here,  $f_{ji} = f_{ij}$ ). On the appropriate jet space we use the variables  $p_k$  for the derivatives  $(x^k)'$ . If we denote the total derivative with respect to  $x^i$  by

$$D_{x^i} := \partial_{x^i} + f_{ij}\partial_{p_i} + p_i\partial_u,$$

then we set

$$\mathbf{E} := \operatorname{span}\{D_{x^1}, \dots, D_{x^n}\}, \qquad \mathbf{F} := \operatorname{span}\{\partial_{p_1}, \dots, \partial_{p_n}\}.$$

These distributions are invariant under point transformations. Integrability of the PDE system is equivalent to integrability of **E**.

Lie brackets of elements of the adapted frame  $(\partial_u, D_{x^i}, \partial_{p_i})$  are given by

$$\begin{aligned} [\partial_u, D_{x^i}] &= (\partial_u f_{ij}) \partial_{p_j} \\ [\partial_u, \partial_{p_i}] &= 0 \\ [D_{x^i}, D_{x^j}] &= 0 \\ [D_{x^i}, \partial_{p_j}] &= -(\partial_{p_j} f_{ik}) \partial_{p_k} - \delta^j{}_i \partial_u \\ [\partial_{p_i}, \partial_{p_j}] &= 0. \end{aligned}$$

The coframe dual to  $(\partial_u, D_{x^i}, \partial_{p_i})$  is  $(\sigma, \theta^i, \pi_i)$ , where

$$\sigma = du - p_i dx^i$$
  

$$\theta^i = dx^i$$
  

$$\pi_i = dp_i - f_{ij} dx^j.$$

Adaptation implies that  $\sigma$  is a contact form for **H**; differentiating gives

$$d\sigma = dx^i \wedge dp_i$$
.

The only nontrivial evaluations of  $d\sigma$  on basis elements are those determined by

$$d\sigma(D_{x^i}, \partial_{p_i}) = 1.$$

We denote the volume n-vectors

$$\operatorname{vol}_{\mathbf{E}} := D_{x^1} \wedge \cdots \wedge D_{x^n} \in \Gamma(\wedge^n \mathbf{E}), \qquad \operatorname{vol}_{\mathbf{F}} := \partial_{p_1} \wedge \cdots \wedge \partial_{p_n} \in \Gamma(\wedge^n \mathbf{F}).$$

## 5. The partial connections $\nabla^{\mathbf{E}}$ , $\nabla^{\mathbf{F}}$

We use  $\mathbf{Q}^*$  as a bundle of scales; pulling back a nonvanishing section of  $\mathbf{Q}^*$  via  $TM \to \mathbf{Q}$  gives a contact form  $\sigma$  of  $\mathbf{H}$ . Equation (5.17) in C & S gives that the restrictions  $\nabla^{\mathbf{E}}$ ,  $\nabla^{\mathbf{F}}$  of the Weyl connection associated to  $\sigma$  are characterized by

$$\begin{split} &d\sigma(\nabla^{\mathbf{E}}_{\eta_1}\xi,\eta_2) = d\sigma([\eta_1,\xi],\eta_2) \\ &d\sigma(\nabla^{\mathbf{E}}_{\xi_1}\xi_2,\eta) = \xi_1 \cdot d\sigma(\xi_2,\eta) + d\sigma(\xi_2,[\xi_1,\eta]) \\ &d\sigma(\nabla^{\mathbf{F}}_{\xi_1}\eta,\xi_2) = d\sigma([\xi_1,\eta],\xi_2) \\ &d\sigma(\nabla^{\mathbf{F}}_{\eta_1}\eta_2,\xi) = \eta_1 \cdot d\sigma(\eta_2,\xi) + d\sigma(\eta_2,[\eta_1,\xi]). \end{split}$$

# 5.1. Integrable systems of PDEs. Taking $\sigma|_{\mathbf{Q}} \in \Gamma(\mathbf{Q}^*)$ as our scale gives the contact form $\sigma$ for H.

Using earlier formulae gives (herein abusing notation slightly by denoting also by  $\theta^j$  and  $\pi_j$  respectively the pullbacks of  $\theta^j$  and  $\pi_j$  via  $\mathbf{H} \hookrightarrow TM$ .)

$$\nabla^{\mathbf{E}} D_{x^i} = (-\partial_{p_k} f_{ij}) D_{x^k} \otimes \theta^j$$
$$\nabla^{\mathbf{F}} \partial_{p_i} = (-\partial_{p_i} f_{jk}) \partial_{p_k} \otimes \theta^j.$$

Dualizing gives formulae for the dual connections:

$$\nabla^{\mathbf{E}} \theta^i = (\partial_{p_i} f_{jk}) \theta^j \otimes \theta^k$$
$$\nabla^{\mathbf{F}} \pi_i = (\partial_{p_j} f_{ik}) \pi_j \otimes \theta^k.$$

The induced connections on the bundles of n-vectors and n-forms are then characterized by

$$\nabla^{\mathbf{E}} \operatorname{vol}_{\mathbf{E}} = -(\partial_{p_i} f_{ij}) \operatorname{vol}_{\mathbf{E}} \otimes \theta^j$$
$$\nabla^{\mathbf{F}} \operatorname{vol}_{\mathbf{F}} = -(\partial_{p_i} f_{ij}) \operatorname{vol}_{\mathbf{F}} \otimes \theta^j.$$

The induced connection on the line bundle  $\mathcal{E}(a,b)$  is

$$\nabla \epsilon = -\left(\frac{a+b}{n}\right)(\partial_{p_i} f_{ij})\epsilon \otimes \theta^j,$$

where  $\epsilon \in \Gamma(\mathcal{E}(a,b))$  satisfies  $\epsilon^{(n+2)n} := (\wedge^n \mathbf{E})^{\otimes (an+a+b)} \otimes (\wedge^n \mathbf{F})^{\otimes (bn+a+b)}$ .

## 6. BGG operators, n > 1

6.1. Dual second exterior power of the standard representation:  $\wedge^2 \mathbb{V}^*$ . By Kostant, the operator is

$$\Theta: \Gamma\left( \begin{matrix} 0 & 1 & 0 & 0 \\ \hline{\times} & & & & \\ \end{matrix} \right) \to \Gamma\left( \begin{matrix} -2 & 2 & 0 & 0 & 0 \\ \hline{\times} & & & \\ \end{matrix} \right) \to \left( \begin{matrix} -2 & 2 & 0 & 0 & 0 \\ \hline{\times} & & & \\ \end{matrix} \right),$$

or

$$\Theta: \Gamma(\mathbf{E}^*(2,0)) \to \Gamma(S^2\mathbf{E}^*(2,0) \oplus (\mathbf{E}^* \otimes \mathbf{F}^*)_{\circ}(2,0)).$$

(For n=2, it is

$$\Theta: \Gamma\left( \overset{0}{\times} \overset{1}{\longrightarrow} \overset{0}{\longrightarrow} \overset{0}{\times} \right) \to \Gamma\left( \overset{-2}{\times} \overset{2}{\longrightarrow} \overset{0}{\longrightarrow} \overset{0}{\times} \overset{0}{\longrightarrow} \overset{2}{\longrightarrow} \overset{-2}{\longrightarrow} \right).)$$

The respective component maps  $\Theta^{\mathbf{E}}$ ,  $\Theta^{\mathbf{F}}$  are both first-order operators, so they are given by differentiating by the restriction of the Weyl connection to the appropriate subbundle and projecting onto the highest-weight irreducible subbundle:

$$\Theta^{\mathbf{E}} : \mu_{\alpha} \mapsto \nabla_{(\alpha} \mu_{\beta)}$$

$$\Theta^{\mathbf{F}} : \mu_{\alpha} \mapsto (\nabla_{\bar{\alpha}} \mu_{\beta})_{\circ} = \nabla_{\bar{\alpha}} \mu_{\beta} - \frac{1}{n} (\mathcal{L}^{\gamma \bar{\zeta}} \nabla_{\bar{\zeta}} \mu_{\gamma}) \mathcal{L}_{\beta \bar{\alpha}}.$$

- 6.1.1. Integrable systems of PDEs. For  $\mu = \mu_i \theta^j \otimes \epsilon$ :
  - The components of  $\Theta^{\mathbf{E}}(\mu)_{\alpha\beta}$  are

$$\frac{1}{2}(D_{x^i}\cdot\mu_j+D_{x^j}\cdot\mu_i)+\frac{n-2}{2}\alpha_k\partial_{p_k}f_{ij}.$$

(NB the second term vanishes for n = 2.)

• The components of  $\Theta^{\mathbf{F}}(\mu)_{\alpha\bar{\beta}}$  are

$$\partial_{p_i} \cdot \mu_j - \frac{1}{n} (\partial_{p_k} \cdot \mu_k) \delta^i{}_j,$$

that is, the tracefree part of  $\partial_{p_i} \cdot \mu_j$ .

6.2. Second exterior power of the standard representation:  $\wedge^2 \mathbb{V}$ . By Kostant, the operator is

$$\Theta: \Gamma\left( \overset{0}{\times} \overset{0}{\longrightarrow} \overset{1}{\circ} \overset{0}{\longrightarrow} \overset{1}{\times} \right) \to \Gamma\left( \overset{0}{\times} \overset{0}{\longrightarrow} \overset{2}{\circ} \overset{-2}{\longrightarrow} \overset{1}{\times} \overset{1}{\longrightarrow} \overset{1}{\circ} \overset{0}{\longrightarrow} \overset{1}{\times} \right),$$

or

$$\Theta: \Gamma(\mathbf{F}^*(0,2)) \to \Gamma(S^2\mathbf{F}^*(0,2) \oplus (\mathbf{E}^* \otimes \mathbf{F}^*)_{\circ}(0,2)).$$

For  $n=2, \wedge^2 \mathbb{V} \cong \wedge^2 \mathbb{V}^*$ ; see the relevant subsection.

The respective component maps  $\Theta^{\mathbf{E}}$ ,  $\Theta^{\mathbf{F}}$  are both first-order operators, so they are given by differentiating by the restriction of the Weyl connection to the appropriate subbundle and projecting onto the highest-weight irreducible subbundle:

$$\Theta^{\mathbf{E}} : \mu_{\bar{\alpha}} \mapsto (\nabla_{\alpha} \mu_{\bar{\beta}})_{\circ} = \nabla_{\alpha} \mu_{\bar{\beta}} - \frac{1}{n} (\mathcal{L}^{\gamma\bar{\zeta}} \nabla_{\gamma} \mu_{\bar{\zeta}}) \mathcal{L}_{\alpha\bar{\beta}}$$
  
$$\Theta^{\mathbf{F}} : \mu_{\bar{\alpha}} \mapsto \nabla_{(\bar{\alpha}} \mu_{\bar{\beta}}).$$

- 6.2.1. Integrable systems of PDEs. For  $\mu = \mu^j \pi_j \otimes \epsilon$ :
  - The components of  $\Theta^{\mathbf{E}}(\mu)_{\bar{\alpha}\bar{\beta}}$  are

$$\frac{1}{2}(\partial_{p_i}\cdot\mu^j+\partial_{p_j}\cdot\mu^i).$$

• The components of  $\Theta^{\mathbf{F}}(\mu)_{\alpha\bar{\beta}}$  are

$$D_{x^i} \cdot \mu^j + \mu^k \partial_{p_j} f_{ik} - \frac{2}{n} \mu^j \partial_{p_k} f_{ik} - \frac{1}{n} \left( D_{x^k} \cdot \mu^k + \frac{n-2}{n} \mu^k \partial_{p_l} f_{kl} \right) \delta^j_{i,j}$$

that is, the tracefree part of  $D_{x^i} \cdot \mu^j + \mu^k \partial_{p_i} f_{ik} - \frac{2}{n} \mu^j \partial_{p_k} f_{ik}$ . Again the formula simplifies for n=2.

- 6.3. **Rho tensor.** In homogeneity 2, the harmonic curvature takes values in  $\wedge_{\circ}^2 \mathfrak{g}_{-1} \otimes \mathfrak{g}_0^{ss}$ . Precomputing gives:
- (1) [[(X,Y),(Z,W)],r] = -[B(X,Z) + B(Y,W)]r

(2) 
$$[[(X,Y),(Z,W)],(X',Y')] = [B(X',Z)X - B(X',Y)W + B(X,Z)X',B(Y,W)Y' - B(X,Y')Z + B(W,Y')Y].$$

Here, B is  $\frac{1}{2(n+2)}$  times the Killing form.

The adjoint action of  $\mathfrak{g}_0^{ss}$  on  $\mathfrak{g}_{+2}$  is trivial, so  $\{(R^{(2)} + \partial P^{(2)})(\xi, \eta), q(r) = 0, \text{ and since } \nabla(q(r)) = 0, \text{ we get } 0 = \{\{\xi, \mathsf{P}^{(2)}(\eta)\} - \{\eta, \mathsf{P}^{(2)}(\xi)\}, q(r)\}, \text{ so substituting in (1) and rearranging gives } \mathsf{P}^{(2)}(\eta)(\xi) = \mathsf{P}^{(2)}(\xi)(\eta); \text{ decomposition according to the splitting } \mathbf{H} = \mathbf{E} \oplus \mathbf{F} \text{ gives precisely the identities}$ 

$$\mathsf{P}_{\alpha\beta} = \mathsf{P}_{\beta\alpha}, \qquad \mathsf{P}_{\alpha\bar{\beta}} = \mathsf{P}_{\bar{\beta}\alpha}, \qquad \mathsf{P}_{\bar{\alpha}\bar{\beta}} = \mathsf{P}_{\bar{\beta}\bar{\alpha}}.$$

The decomposition  $\mathbf{H} = \mathbf{E} \oplus \mathbf{F}$  determines decompositions of  $\wedge^2 \mathbf{H}^* \otimes \operatorname{End}_{\circ}(\mathbf{H})$ . In particular, (2) display equation shows that the components of  $\{\cdot, \mathsf{P}(\cdot)\}$  taking values in  $L(\mathbf{E}, \mathbf{F})$  and  $L(\mathbf{F}, \mathbf{E})$  are zero. Specializing the

above formula gives that the remaining components of  $\{\cdot, P(\cdot)\}: \mathbf{H}^* \otimes \mathbf{H}^* \to \operatorname{End}_0(\mathbf{H})$  are

$$\begin{split} \mathbf{E} \times \mathbf{E} &\to \operatorname{End}(\mathbf{E}): & \mathsf{P}_{\beta\zeta} \delta^{\gamma}{}_{\alpha} + \mathsf{P}_{\beta\alpha} \delta^{\gamma}{}_{\zeta} \\ \mathbf{E} \times \mathbf{E} &\to \operatorname{End}(\mathbf{F}): & -\mathcal{L}_{\alpha\bar{\zeta}} \mathsf{P}_{\beta}{}^{\bar{\gamma}} \\ \mathbf{E} \times \mathbf{F} &\to \operatorname{End}(\mathbf{E}): & \mathsf{P}_{\bar{\beta}\zeta} \delta^{\gamma}{}_{\alpha} + \mathsf{P}_{\bar{\beta}\alpha} \delta^{\gamma}{}_{\zeta} \\ \mathbf{E} \times \mathbf{F} &\to \operatorname{End}(\mathbf{F}): & -\mathcal{L}_{\alpha\bar{\zeta}} \mathsf{P}_{\bar{\beta}}{}^{\bar{\gamma}} \\ \mathbf{F} \times \mathbf{E} &\to \operatorname{End}(\mathbf{E}): & -\mathcal{L}_{\zeta\bar{\alpha}} \mathsf{P}_{\beta}{}^{\gamma} \\ \mathbf{F} \times \mathbf{E} &\to \operatorname{End}(\mathbf{F}): & \mathsf{P}_{\beta\bar{\alpha}} \delta^{\bar{\gamma}}{}_{\bar{\zeta}} + \mathsf{P}_{\beta\bar{\zeta}} \delta^{\bar{\gamma}}{}_{\bar{\alpha}} \\ \mathbf{F} \times \mathbf{F} &\to \operatorname{End}(\mathbf{E}): & -\mathcal{L}_{\zeta\bar{\alpha}} \mathsf{P}_{\bar{\beta}}{}^{\gamma} \\ \mathbf{F} \times \mathbf{F} &\to \operatorname{End}(\mathbf{F}): & \mathsf{P}_{\bar{\beta}\bar{\alpha}} \delta^{\bar{\gamma}}{}_{\bar{\zeta}} + \mathsf{P}_{\bar{\beta}\bar{\zeta}} \delta^{\bar{\gamma}}{}_{\bar{\alpha}}. \end{split}$$

Thus, the part of  $\partial P$  with components in  $\wedge^2 \mathbf{H} \to \operatorname{End}_{\circ}(\mathbf{H})$  (in particular using (3)) has  $\operatorname{End}(\mathbf{E})$ -valued components

$$\begin{split} & \wedge^2 \mathbf{E}^* \otimes \operatorname{End}(\mathbf{E}): & (\partial \mathsf{P})_{\alpha\beta}{}^{\gamma}{}_{\zeta} = \mathsf{P}_{\beta\zeta} \delta^{\gamma}{}_{\alpha} - \mathsf{P}_{\alpha\zeta} \delta^{\gamma}{}_{\beta} \\ & \mathbf{E}^* \otimes \mathbf{F}^* \otimes \operatorname{End}(\mathbf{E}): & (\partial \mathsf{P})_{\alpha\bar{\beta}}{}^{\gamma}{}_{\zeta} = \mathsf{P}_{\bar{\beta}\alpha} \delta^{\gamma}{}_{\zeta} + \mathsf{P}_{\bar{\beta}\zeta} \delta^{\gamma}{}_{\alpha} + \mathcal{L}_{\zeta\bar{\beta}} \mathsf{P}_{\alpha}{}^{\gamma} \\ & \wedge^2 \mathbf{F}^* \otimes \operatorname{End}(\mathbf{E}): & (\partial \mathsf{P})_{\bar{\alpha}\bar{\beta}}{}^{\gamma}{}_{\zeta} = -\mathcal{L}_{\zeta\bar{\alpha}} \mathsf{P}_{\bar{\beta}}{}^{\gamma} + \mathcal{L}_{\zeta\bar{\beta}} \mathsf{P}_{\bar{\alpha}}{}^{\gamma}, \end{split}$$

and the  $\operatorname{End}(\mathbf{F})$ -valued components can be recovered from the isomorphism  $\operatorname{End}(\mathbf{E}) \cong \operatorname{End}(\mathbf{F})$ . (\*\*\* Is this:  $\phi^{\alpha}{}_{\beta} \mapsto \phi_{\bar{\alpha}}{}^{\bar{\beta}} = -\phi^{\bar{\beta}}{}_{\bar{\alpha}}$ ?):

Computing gives that the image of  $A \in \Gamma(\wedge^2 \mathbf{H}^* \otimes \operatorname{End}(\mathbf{E}))$  under the codifferential  $\partial^* : \wedge^2 \mathbf{H}^* \otimes \operatorname{End}(\mathbf{H}) \to \mathbf{H}^* \otimes \operatorname{End}(\mathbf{H})$  has components

$$(\partial^* A)_{\alpha\beta} = A_{\gamma\alpha}{}^{\gamma}{}_{\beta}$$
$$(\partial^* A)_{\alpha\bar{\beta}} = A_{\alpha\bar{\gamma}\bar{\beta}}{}^{\bar{\gamma}}$$
$$(\partial^* A)_{\bar{\alpha}\beta} = A_{\gamma\bar{\alpha}}{}^{\gamma}{}_{\beta}$$
$$(\partial^* A)_{\bar{\alpha}\bar{\beta}} = A_{\bar{\alpha}\bar{\gamma}\bar{\beta}}{}^{\bar{\gamma}}.$$

Now, expanding the normality condition  $\partial^*(R^{(2)} + \partial \mathsf{P}^{(2)}) = 0$  gives

$$\begin{split} \mathsf{P}_{\alpha\beta} &= -\frac{1}{n-1} R_{\gamma\alpha}{}^{\gamma}{}_{\beta} \\ \mathsf{P}_{\alpha\bar{\beta}} &= -\frac{1}{n+1} \left( -R_{\bar{\gamma}\alpha}{}^{\bar{\gamma}}{}_{\bar{\beta}} + \frac{1}{2n+1} R_{\bar{\gamma}\zeta}{}^{\bar{\gamma}\zeta} \mathcal{L}_{\alpha\bar{\beta}} \right) \\ \mathsf{P}_{\bar{\alpha}\bar{\beta}} &= -\frac{1}{n-1} R_{\bar{\gamma}\bar{\alpha}}{}^{\bar{\gamma}}{}_{\bar{\beta}} \end{split}$$

6.4. Transformation rules. We can write any change of scale as  $\sigma \leadsto \widehat{\sigma} = \sigma(\exp \Upsilon_1)(\exp \Upsilon_2)$ .

Email address: travis.willse@univie.ac.at