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Basic definitions

Definition

A conformal structure on a smooth manifold M is an equivalence
class c of (pseudo-)Riemannian metrics on M, where g ∼ g ′ iff
g ′ = Ω2g for some smooth Ω > 0.

I Idea: With c, we can measure angles but not lengths.

Definition

A (pseudo-)Riemannian metric g is Einstein if Ric = µg .

Problem: When does a conformal structure c contain an Einstein
metric g? (Brinkmann, Hanntjes & Wrona, et al.)
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The conformal-to-Einstein problem

I We follow Bailey, Eastwood, Gover: Given g ∈ c, we search
for a ĝ with R̂ic = µĝ , that is, R̂ic◦ = 0 (here, ·◦ denotes
tracefree part).

I Instead we use the Schouten tensor P, a trace-adjustment of
Ricci:

P =
1

n − 2

(
Ric− R

2(n − 1)
g

)
.

I Under a change g  ĝ := Ω2g , this transforms as

P̂ = P−∇Υ + Υ⊗Υ− 1
2g(Υ,Υ)g , Υ = d log Ω.

I So, R̂ic◦ = 0 is equivalent to P̂◦ = 0 and thus to

(P−∇Υ + Υ⊗Υ)◦ = 0.

I This pde is nonlinear in Ω but...
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The tractor bundle

I ...changing variables to σ := Ω−1 linearizes the p.d.e.:

(∇2σ + Pσ)◦ = 0. (∗)

I On the set {σ 6= 0}, σ−2g is Einstein. So, we call solutions σ
almost Einstein scales for c; if c admits a nonzero a.E.s., we
say c is almost Einstein.

I We can write (∗) as a system of first-order p.d.e.s. Prolonging
once results in a closed system and hence a connection ∇V on
a vector bundle V → M, the standard tractor bundle.

I Comes with a fiber metric H satisfying ∇VH = 0, so
Hol(∇V) ≤ SO(H).

Theorem (Bailey-Eastwood-Gover (‘94))

For any conformal structure c, there is a bijective correspondence

{almost Einstein scales σ}
LV0
�
ΠV

0

{∇V -parallel sections S of V}
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(2, 3, 5) distributions

Definition

A (2, 3, 5) distribution D is a 2-plane field on a 5-manifold M
satisfying the genericity condition that [D, [D,D]] = TM (this
implies that rank[D,D] = 3).

I Rich history! Cartan demonstrated a relationship between
(2, 3, 5) distributions and G2 in his well-known (and difficult)
1910 “Five Variables Paper”.

Theorem (Nurowski (‘05))

A (2, 3, 5) distribution (M,D) canonically determines a conformal
structure cD (of signature (2, 3)) on M.

I We call the conformal structures that arise this way (2, 3, 5)
conformal structures



(2, 3, 5) distributions

Definition

A (2, 3, 5) distribution D is a 2-plane field on a 5-manifold M
satisfying the genericity condition that [D, [D,D]] = TM (this
implies that rank[D,D] = 3).

I Rich history! Cartan demonstrated a relationship between
(2, 3, 5) distributions and G2 in his well-known (and difficult)
1910 “Five Variables Paper”.

Theorem (Nurowski (‘05))

A (2, 3, 5) distribution (M,D) canonically determines a conformal
structure cD (of signature (2, 3)) on M.

I We call the conformal structures that arise this way (2, 3, 5)
conformal structures



(2, 3, 5) distributions

Definition

A (2, 3, 5) distribution D is a 2-plane field on a 5-manifold M
satisfying the genericity condition that [D, [D,D]] = TM (this
implies that rank[D,D] = 3).

I Rich history! Cartan demonstrated a relationship between
(2, 3, 5) distributions and G2 in his well-known (and difficult)
1910 “Five Variables Paper”.

Theorem (Nurowski (‘05))

A (2, 3, 5) distribution (M,D) canonically determines a conformal
structure cD (of signature (2, 3)) on M.

I We call the conformal structures that arise this way (2, 3, 5)
conformal structures



(2, 3, 5) distributions

Definition

A (2, 3, 5) distribution D is a 2-plane field on a 5-manifold M
satisfying the genericity condition that [D, [D,D]] = TM (this
implies that rank[D,D] = 3).

I Rich history! Cartan demonstrated a relationship between
(2, 3, 5) distributions and G2 in his well-known (and difficult)
1910 “Five Variables Paper”.

Theorem (Nurowski (‘05))

A (2, 3, 5) distribution (M,D) canonically determines a conformal
structure cD (of signature (2, 3)) on M.

I We call the conformal structures that arise this way (2, 3, 5)
conformal structures



(2, 3, 5) conformal structures (cont.)

I Question: When does a (2, 3, 5) conformal structure (M, cD)
admit an almost Einstein scale?

Theorem (Nurowski (‘05), Hammerl & Sagerschnig (‘09))

An (oriented) conformal structure c is induced by a distribution D
if V admits a ∇V -parallel tractor G∗2-structure compatible with the
conformal structure in the sense that G∗2 < SO(H) ∼= SO(3, 4).

I Such a G∗2-structure can be encoded in a ∇V parallel tractor
3-form Φ ∈ Γ(Λ3V∗).

I Underlying φ is a (weighted) 2-form φ ∈ Γ(Λ2T ∗M ⊗ E [3]).
This turns out to be locally decomposable and nowhere zero,
so it defines a 2-plane field on M, namely D
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(Almost Einstein (2, 3, 5) conformal structures)

Proposition

An oriented conformal structure of signature (2, 3) is both (2, 3, 5)
and almost Einstein iff it admits a holonomy reduction to the
intersection S of Stab(Φ) = G∗2 and the stabilizer Stab(S) of a
nonzero vector in V.

I There are three cases according to the causality type of the
vector

I (spacelike) S = SU(1, 2), g Ricci-negative
I (isotropic) S = SL(2,R) n Q+, g Ricci-flat
I (timelike) S = SL(3,R), g Ricci-positive
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The canonical vector field

I Can combine S, Φ algebraically to produce other parallel
tractor objects and look at the underlying objects.

I Raising an index of −S yΦ gives a parallel H-skew
endomorphism K ∈ Γ(EndV). Underlying it is a conformal
Killing field ξ ∈ Γ(TM) of c.

I The flow Ξt of ξ does not preserve D, hence the images of D
under Ξt comprise a 1-parameter family {Dt} whose elements
all induce the same conformal structure.
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The conformal isometry problem

I This connects the existence of an almost Einstein scale for cD
with a conformal isometry problem:

Problem

Given a (2, 3, 5) distribution D, what are the distributions D′ such
that cD′ = cD? Alternatively, what are the fibers of Nurowski’s
functor, D cD?
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Compatible 3-forms

I Working at the level of parallel sections of tractor bundles,
this problem becomes algebraic: What are the 3-forms Φ′ that
(1) are stabilized by the common stabilizer S of S and Φ and
(2) are compatible with H (G∗2

∼= StabSO(H)(Φ′) < SO(H)).
May as well assume ε := −H(S, S) ∈ {−1, 0,+1}.

I These are precisely the 3-forms

Φ′ := Φ + ĀS y (S[ ∧ Φ) + B S y ∗ Φ,

where −εĀ2 + 2Ā + B2 = 0
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Solution to the conformal isometry problem

Theorem

Fix an oriented (2, 3, 5) distribution (M,D).

1. Suppose (M, cD) admits the nonzero almost Einstein scale σ;
by rescaling, we may assume that ε ∈ {−1, 0,+1}. Then, for
(Ā,B) as before,

φ′ab := φab + Ā
[

1
5σ

2
(

1
3φab,c

c + 2
3φc[a,b]

c + 1
2φc[a,

c
b] + 4Pc

[aφb]c

)
− σσ,cφ[ca,b]

−1
2σσ,[aφb]c,

c − 1
5σσ,c

cφab + 3σ,cσ,[cφab]

]
+ B[−1

4σφ
cd ,

dφ[ab,c] + 3
4σ

,cφ[abφc]d ,
d ]

determines a D′ for which cD′ = cD.

2. Conversely, all conformally isometric oriented (2, 3, 5)
distributions arise this way.

Theorem

For any D, the oriented conformal structure cD is almost Einstein
if there is a D′ 6= D such that cD′ = cD.
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Cartan geometries

I Both (oriented) conformal geometry and (oriented) (2, 3, 5)
distributions can be realized as Cartan geometries of certain
types.

I For a pair (G ,P), P ≤ G of Lie groups, these are pairs
(G → M, ω), where G is a principal P-bundle and ω is a
Cartan connection. Modeled on (G → G/P, ωMC). Idea: Use
these to encode underlying geometric structures on M.

I Oriented conformal geometry in signature (2, 3): Type
(SO(3, 4), P̄)

I Oriented (2, 3, 5) conformal structures: Type (G∗2,Q).

I For a conformal structure c with corresponding Cartan
geometry (Ḡ, ω̄), the standard tractor bundle is Ḡ ×P̄ V and ω
induces ∇V , so a holonomy reduction of ∇V determines a
holonomy reduction of (Ḡ, ω̄).
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Curved orbit decompositions

I Idea: Holonomy reduction of (G, ω) to a group S < G
determines a partition

∐
a Ma of M into “curved orbits”.

I Modeled on S-orbit decomposition of the flat model G/P.

I Each curved orbit Ma inherits a principal bundle embedding
ja : Ga ↪→ G|Ma, and (Ga, j∗aω) is a Cartan geometry of type
(H,P ∩ S)—curved orbits correspond to conjugacy classes of
P ∩ S . We can try to interpret these new Cartan geometries
in terms of underlying data.
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Curved orbits for a.E. (2, 3, 5) conformal structures

Ricci-negative case
Ma (S , S ∩ P) structure σ L := 〈ξ〉

M±5 (SU(1, 2), SU(1, 1))
Sasaki-Einstein

(−σ−2g , ξ)
±σ > 0

L ⊂ [D,D]
L t D

M4 (SU(1, 2),P−)
Fefferman (1, 3)

conformal structure
σ = 0 L ⊂ D

I Since ξ yW = 0, we can reduce the Sasaki-Einstein structure
by ξ. Yields a Cartan geometry of type (SU(1, 2),U(1, 1)),
which in this case determines a Ricci-negative Einstein Kähler
structure (L4, h, J) on the leaf space L4 of L|M5. (Here, J is
induced by ∇ξ.)

I Conversely, given (L4, h, J), we can build (Fefferman) an
S1-bundle M → L canonically equipped with c, σ, {Dt}.

I Likewise, L|M4 is the distinguished symmetry of a Fefferman
conformal structure, and its (3d) leaf space inherits a
CR-structure.



Curved orbits for a.E. (2, 3, 5) conformal structures
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A Ricci-negative example

Example

Take (S±, h±, J±) to be the round sphere and hyperbolic plane
with their usual Riemann surface structures, normalized so that
their scalar curvatures are ±12. Then,
(S+ × S−, h+ ⊕−h−, J+ ⊕ J−) is a Kähler manifold satisfying
Ric = 6(h+ ⊕−h−). The 1-parameter family of distributions on
the twistor space M5 are all equivalent under the flow of ξ, and are
each diffeomorphic to the rolling distribution D (‘no-slip, no-twist’)
for S+ on S− on the rolling configuration space for S+ and S−.
Hol(∇V) ∼= SU(1, 2).



Curved orbits for a.E. (2, 3, 5) conformal structures II

Ricci-positive case
Ma (S ,S ∩ P) structure σ L := 〈ξ〉

M±5 (SL(3,R), SL(2,R))
para–Sasaki-Einstein

(−σ−2g , ξ)
±σ > 0

L ⊂ [D,D]
L t D

M4 (SL(3,R),P12)
para-Fefferman (2, 2)
conformal structure

σ = 0 L ⊂ D

M±2 (SL(2,R),P)
projective

surface
σ = 0 ξ = 0

I Similar to Ricci-negative case. This time, the leaf space L3 of
M4 inherits a 3d Lagrangean contact structure, equivalently
an o.d.e. y ′′ = F (x , y , y ′) modulo point equivalence.

I This isolates an interesting class of a.E. (2, 3, 5) conformal
structures. For any projective surface (N,p), consider the
geodesic o.d.e. and build the para-Fefferman structure it
determines. Then, try to find a collar.
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Thank you.


