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Definition
A conformal structure on a smooth manifold M is an equivalence

class c of (pseudo-)Riemannian metrics on M, where g ~ g’ iff
g’ = Q%g for some smooth Q > 0.

> ldea: With ¢, we can measure angles but not lengths.

Definition

A (pseudo-)Riemannian metric g is Einstein if Ric = ug.

Problem: When does a conformal structure ¢ contain an Einstein
metric g7 (Brinkmann, Hanntjes & Wrona, et al.)
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The conformal-to-Einstein problem

» We follow Bai/lgy, Eastwood, Goxgr: Given g € ¢, we search
for a g with Ric = pg, that is, Ric, = 0 (here, -5 denotes
tracefree part).

v

Instead we use the Schouten tensor P, a trace-adjustment of

Ricci: . R

Under a change g ~ & := Q2?g, this transforms as

v

P=P-VT+TaT-L1g(T,T)g,  T=dlogQ.

So, Fsi\cO = 0 is equivalent to P, = 0 and thus to

\4

(P-VT+T®&T), =0.

v

This pde is nonlinear in Q but...
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The tractor bundle
» ...changing variables to ¢ := Q7! linearizes the p.d.e.:
(V%0 + Po), = 0. (%)

» On the set {0 # 0}, 02g is Einstein. So, we call solutions &
almost Einstein scales for c; if ¢ admits a nonzero a.E.s., we
say c is almost Einstein.

» We can write (%) as a system of first-order p.d.e.s. Prolonging
once results in a closed system and hence a connection VY on
a vector bundle ¥V — M, the standard tractor bundle.

» Comes with a fiber metric H satisfying V¥H = 0, so
Hol(VY) < SO(H).

Theorem (Bailey-Eastwood-Gover ('94))

For any conformal structure c, there is a bijective correspondence
Ly
{almost Einstein scales o} = {VY-parallel sections S of V}

v
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Definition

A (2,3,5) distribution D is a 2-plane field on a 5-manifold M
satisfying the genericity condition that [D, [D, D]] = TM (this
implies that rank[D, D] = 3).

» Rich history! Cartan demonstrated a relationship between
(2,3,5) distributions and Gz in his well-known (and difficult)
1910 “Five Variables Paper"”.

Theorem (Nurowski (‘05))

A (2,3,5) distribution (M, D) canonically determines a conformal
structure cp (of signature (2,3)) on M.

» We call the conformal structures that arise this way (2, 3,5)
conformal structures
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(2, 3, 5) conformal structures (cont.)

» Question: When does a (2,3,5) conformal structure (M, cp)
admit an almost Einstein scale?

Theorem (Nurowski (‘05), Hammerl & Sagerschnig (‘09))

An (oriented) conformal structure c is induced by a distribution D
if V admits a VYV-parallel tractor G5-structure compatible with the
conformal structure in the sense that G; < SO(H) = SO(3,4).

» Such a G}-structure can be encoded in a VY parallel tractor
3-form & € T(A3V*).

» Underlying ¢ is a (weighted) 2-form ¢ € T(A2T*M ® £[3]).
This turns out to be locally decomposable and nowhere zero,
so it defines a 2-plane field on M, namely D
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Proposition

An oriented conformal structure of signature (2,3) is both (2,3, 5)
and almost Einstein iff it admits a holonomy reduction to the
intersection S of Stab(®) = G5 and the stabilizer Stab(S) of a

nonzero vector in V.

» There are three cases according to the causality type of the
vector
> (spacelike) S = SU(1,2), g Ricci-negative
» (isotropic) S = SL(2,R) x Q;, g Ricci-flat
» (timelike) S =SL(3,R), g Ricci-positive
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The canonical vector field

» Can combine S, ¢ algebraically to produce other parallel
tractor objects and look at the underlying objects.

» Raising an index of —S 1 ® gives a parallel H-skew
endomorphism K € '(End V). Underlying it is a conformal
Killing field £ € T(TM) of c.

» The flow =; of £ does not preserve D, hence the images of D
under =; comprise a 1-parameter family {D;} whose elements
all induce the same conformal structure.
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The conformal isometry problem

» This connects the existence of an almost Einstein scale for cp
with a conformal isometry problem:

Problem

Given a (2,3,5) distribution D, what are the distributions D" such
that cpr = cp? Alternatively, what are the fibers of Nurowski’s
functor, D ~~ cp?
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Compatible 3-forms

» Working at the level of parallel sections of tractor bundles,
this problem becomes algebraic: What are the 3-forms ¢’ that
(1) are stabilized by the common stabilizer S of S and ¢ and
(2) are compatible with H (G5 = Stabso)(®') < SO(H)).
May as well assume ¢ := —H(S,S) € {-1,0,+1}.

» These are precisely the 3-forms
=D+ ASL(S AD)+BSL x b,

where —eA2 + 2A+ B2 =0
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Theorem
Fix an oriented (2, 3,5) distribution (M, D).
1. Suppose (M, cp) admits the nonzero almost Einstein scale o;

by rescaling, we may assume that € € {—1,0,+1}. Then, for
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determines a D’ for which cp/ = cp.

2. Conversely, all conformally isometric oriented (2, 3,5)
distributions arise this way.



Solution to the conformal isometry problem

Theorem
Fix an oriented (2, 3,5) distribution (M, D).

1. Suppose (M, cp) admits the nonzero almost Einstein scale o;
by rescaling, we may assume that € € {—1,0,+1}. Then, for
(A, B) as before,

¢lab = Pap + A [%02 (%Qﬁab?cc + %¢c[a,b]c + %(bc[a,cb] + 4PC[a¢b]c) - 00’7C¢[ca,b]
7%0—0—,[a¢b]c,c - %UU,CC¢ab + 3(775(7,[c¢ab]]
+ B[- 306" 4Bjab. ] + 307 BapPe]a,’]
determines a D’ for which cp’ = cp.

2. Conversely, all conformally isometric oriented (2, 3,5)
distributions arise this way.

Theorem

For any D, the oriented conformal structure cp is almost Einstein
if there is a D' # D such that cp/ = cp.
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Cartan geometries

» Both (oriented) conformal geometry and (oriented) (2,3, 5)
distributions can be realized as Cartan geometries of certain
types.

» For a pair (G, P), P < G of Lie groups, these are pairs
(G — M,w), where G is a principal P-bundle and w is a
Cartan connection. Modeled on (G — G/P,wwmc). Idea: Use
these to encode underlying geometric structures on M.

» Oriented conformal geometry in signature (2,3): Type
(SO(3,4), P)

» Oriented (2, 3,5) conformal structures: Type (G3, Q).

> For a conformal structure ¢ with corresponding Cartan
geometry (G, ®), the standard tractor bundle is G x5V and w

induces VY, so a holonomy reduction of V¥ determines a
holonomy reduction of (G, ®).
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Curved orbit decompositions

» Idea: Holonomy reduction of (G,w) to a group S < G
determines a partition [[, M, of M into “curved orbits".

» Modeled on S-orbit decomposition of the flat model G/P.

» Each curved orbit M, inherits a principal bundle embedding
Ja:Ga — G|M,, and (G,, jiw) is a Cartan geometry of type
(H, P N S)—curved orbits correspond to conjugacy classes of
P NS. We can try to interpret these new Cartan geometries
in terms of underlying data.
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Ricci-negative case

‘ M, ‘ (5,SNP) ‘ structure o ‘ L:= (¢
MZE | (SU(1,2),5U(1,1)) S?Sfii;'gz‘fg‘;i” I
Fefferman (1, 3) B
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» Since £ s W =0, we can reduce the Sasaki-Einstein structure
by £. Yields a Cartan geometry of type (SU(1,2),U(1,1)),
which in this case determines a Ricci-negative Einstein Kahler
structure (L*, h, J) on the leaf space L* of L|Ms. (Here, J is
induced by V¢.)

» Conversely, given (L%, h, J), we can build (Fefferman) an
S-bundle M — L canonically equipped with c, o, {D}.

» Likewise, L|p, is the distinguished symmetry of a Fefferman

conformal structure, and its (3d) leaf space inherits a

CR-structure.




A Ricci-negative example

Example

Take (S4, hy, J1) to be the round sphere and hyperbolic plane
with their usual Riemann surface structures, normalized so that
their scalar curvatures are +12. Then,

(54 xS_,hy & —h_,Jy & J_) is a Kahler manifold satisfying

Ric = 6(hy & —h_). The 1-parameter family of distributions on
the twistor space M® are all equivalent under the flow of &, and are
each diffeomorphic to the rolling distribution D (‘no-slip, no-twist’)
for S+ on S_ on the rolling configuration space for S; and S_.
Hol(VY) = SU(1, 2).
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Ricci-positive case

[ M, | (5,SnP) structure o L:= (¢
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ME | (SL(2,R),P) Projective g =0 £=0
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Ricci-positive case

| M. | (5,.5NP) | structure - L= |
ME | (SLE.R),SLR.R) | P SRR g o b IRD)
M| (SLEE)LPR) | P e | 7=0 | LcD
Mi | (SL2R),P) e c=0 | ¢=0

» Similar to Ricci-negative case. This time, the leaf space L3 of
M* inherits a 3d Lagrangean contact structure, equivalently

an o.d.e. y" = F(x,y,y’) modulo point equivalence.

» This isolates an interesting class of a.E. (2,3,5) conformal
structures. For any projective surface (N, p), consider the
geodesic o.d.e. and build the para-Fefferman structure it
determines. Then, try to find a collar.



Thank you.



