Sasaki-Einstein metrics and their compactifications via projective geometry

Travis Willse Joint \underline{w} A. Rod Gover (U Auckland) and Katharina Neusser (Charles U)

University of Vienna

38th Winter School – Geometry and Physics, Srní, 2018 January 15

 A Sasaki structure on a manifold (M, g) is a complex structure J on its metric cone (Â := M × ℝ₊, h := dr² + r²g) such that (h, J) is a Kähler structure on Â.

- A Sasaki structure on a manifold (M, g) is a complex structure J on its metric cone (Â := M × ℝ₊, h := dr² + r²g) such that (h, J) is a Kähler structure on Â.
- "Odd-dimensional version of Kähler geometry"

- A Sasaki structure on a manifold (M, g) is a complex structure J on its metric cone (Â := M × ℝ₊, h := dr² + r²g) such that (h, J) is a Kähler structure on Â.
- "Odd-dimensional version of Kähler geometry"
- ► We can use the homogeneity of the structure to translate this into a condition on M. In particular, identify $M \leftrightarrow M \times \{1\}$ and set $k := \mathbb{J}(r\partial_r)|_M \in \Gamma(TM)$.

- A Sasaki structure on a manifold (M, g) is a complex structure J on its metric cone (Â := M × ℝ₊, h := dr² + r²g) such that (h, J) is a Kähler structure on Â.
- "Odd-dimensional version of Kähler geometry"
- ► We can use the homogeneity of the structure to translate this into a condition on M. In particular, identify $M \leftrightarrow M \times \{1\}$ and set $k := \mathbb{J}(r\partial_r)|_M \in \Gamma(TM)$.

Definition

A Sasaki manifold is a triple (M, g, k) where g is a metric, and $k \in \Gamma(TM)$ satisfies

- $(0) g_{ab}k^ak^b = 1$
- (1) $\nabla_{(a}k_{b)} = 0$ (equivalently, $\mathcal{L}_{k}g = 0$, i.e., k Killing)
- $(2) \nabla_a \nabla_b k^c = -g_{ab}k^c + \delta^c{}_a k_b$

Sasaki geometry via projective

► The curvature R of a (t.-f., special) affine connection ∇ decomposes as

$$R_{ab}{}^{c}{}_{d} = \underbrace{W_{ab}{}^{c}{}_{d}}_{Weyl} + 2\delta^{c}{}_{[a}\underbrace{\mathsf{P}_{b]d}}_{Schouten}$$

Sasaki geometry via projective

► The curvature R of a (t.-f., special) affine connection ∇ decomposes as

$$R_{ab}{}^{c}{}_{d} = \underbrace{W_{ab}{}^{c}{}_{d}}_{\text{Weyl}} + 2\delta^{c}{}_{[a}\underbrace{P_{b]d}}_{\text{Schouten}}$$

W is projectively invariant

Sasaki geometry via projective

► The curvature R of a (t.-f., special) affine connection ∇ decomposes as

$$R_{ab}{}^{c}{}_{d} = \underbrace{W_{ab}{}^{c}{}_{d}}_{Weyl} + 2\delta^{c}{}_{[a}\underbrace{P_{b]d}}_{Schouten}$$

W is projectively invariant

Theorem (Gover-Neusser-<u>W</u>) A triple (M, g, k) defines a Sasaki manifold iff (0) $g_{ab}k^ak^b = 1$ (1) $\nabla_{(a}k_{b)} = 0$ (k Killing) (2) $W_{ab}{}^c{}_dk^d = 0$ and $P_{ab}k^ak^b = 1$.

► For any $k_a \in \Gamma(T^*M)$, set $\mu_{ab} := \nabla_{[a}k_{b]} = 0 \in \Gamma(\wedge^2 T^*M)$.

- ► For any $k_a \in \Gamma(T^*M)$, set $\mu_{ab} := \nabla_{[a}k_{b]} = 0 \in \Gamma(\wedge^2 T^*M)$.
- Differentiating gives $\nabla_a \mu_{bc} = R_{bc}{}^d{}_a k_d$.

- ► For any $k_a \in \Gamma(T^*M)$, set $\mu_{ab} := \nabla_{[a}k_{b]} = 0 \in \Gamma(\wedge^2 T^*M)$.
- Differentiating gives $\nabla_a \mu_{bc} = R_{bc}{}^d{}_a k_d$.
- So, $\nabla_{(a}k_{b)} = 0$ is equivalent to

$$\begin{cases} 0 = \nabla_a k_b - \mu_{ab} \\ 0 = \nabla_a \mu_{bc} - R_{bc}{}^d{}_a k_d \end{cases}$$

- ► For any $k_a \in \Gamma(T^*M)$, set $\mu_{ab} := \nabla_{[a}k_{b]} = 0 \in \Gamma(\wedge^2 T^*M)$.
- Differentiating gives $\nabla_a \mu_{bc} = R_{bc}{}^d{}_a k_d$.
- ▶ So, $\nabla_{(a}k_{b)} = 0$ is equivalent to

$$\begin{cases} 0 = \nabla_a k_b - \mu_{ab} \\ 0 = \nabla_a \mu_{bc} - R_{bc}{}^d{}_a k_d \end{cases}$$

Proposition

Solutions of $\nabla_{(a}k_{b)} = 0$ are in 1-1 correspondence with sections of $T^*M \oplus \wedge^2 T^*M$ parallel w.r.t.

$$\nabla^{\text{prol}}_{a} \left(\begin{array}{c} k_{b} \\ \mu_{bc} \end{array} \right) := \left(\begin{array}{c} \nabla_{a}k_{b} - \mu_{bc} \\ \nabla_{a}\mu_{bc} + 2\mathsf{P}_{a[b}k_{c]} \end{array} \right) - \left(\begin{array}{c} 0 \\ W_{bc}{}^{d}{}_{a}k_{d} \end{array} \right).$$

Definition

A projective structure on a manifold M is an equivalence class $\mathbf{p} := [\nabla]$ of t.-f. connections where $\nabla \sim \nabla'$ iff ∇, ∇' have the same unparameterized geodesics.

Definition

A projective structure on a manifold M is an equivalence class $\mathbf{p} := [\nabla]$ of t.-f. connections where $\nabla \sim \nabla'$ iff ∇, ∇' have the same unparameterized geodesics.

► Fundamental curvature: Projective Weyl curvature W

Definition

A projective structure on a manifold M is an equivalence class $\mathbf{p} := [\nabla]$ of t.-f. connections where $\nabla \sim \nabla'$ iff ∇, ∇' have the same unparameterized geodesics.

- ► Fundamental curvature: Projective Weyl curvature W
- ► dim M = n + 1: $\mathcal{E}(1) := (\wedge^{n+1}TM)^{1/(n+2)}$, $\overline{\mathcal{E}}(w) := \mathcal{E}(1)^{\otimes w}$.

Definition

A projective structure on a manifold M is an equivalence class $\mathbf{p} := [\nabla]$ of t.-f. connections where $\nabla \sim \nabla'$ iff ∇, ∇' have the same unparameterized geodesics.

- Fundamental curvature: Projective Weyl curvature W
- ▶ dim M = n + 1: $\mathcal{E}(1) := (\wedge^{n+1} TM)^{1/(n+2)}$, $\overline{\mathcal{E}}(w) := \mathcal{E}(1)^{\otimes w}$.
- Define the cotractor bundle $\mathcal{T}^* := J^1 \mathcal{E}(1)$:

$$0 o T^*M \otimes \mathcal{E}(1) o \mathcal{T}^* o \mathcal{E}(1) o 0$$

Definition

A projective structure on a manifold M is an equivalence class $\mathbf{p} := [\nabla]$ of t.-f. connections where $\nabla \sim \nabla'$ iff ∇, ∇' have the same unparameterized geodesics.

- Fundamental curvature: Projective Weyl curvature W
- ► dim M = n + 1: $\mathcal{E}(1) := (\wedge^{n+1} TM)^{1/(n+2)}$, $\mathcal{E}(w) := \mathcal{E}(1)^{\otimes w}$.
- Define the cotractor bundle $\mathcal{T}^* := J^1 \mathcal{E}(1)$:

 $0 \to T^*M(1) \to T^* \to \mathcal{E}(1) \to 0 \qquad B(w) := B \otimes \mathcal{E}(w)$

▶ \exists a canonical normal (co)tractor connection $\nabla^{\mathcal{T}}$ on \mathcal{T}^*

► Get induced bundles and canonical connections.

▲□▶ ▲@▶ ▲ 글▶ ▲ 글▶ 글 りへの

Get induced bundles and canonical connections.
For Λ²T*:

$$0 \rightarrow \wedge^2 T^*M(2) \rightarrow \wedge^2 T^* \rightarrow T^*M(2);$$

from $\nabla \in \mathbf{p}$ we get a splitting $\wedge^2 \mathcal{T}^* \cong T^* M(2) \oplus \wedge^2 T^* M(2)$.

Get induced bundles and canonical connections.
For Λ²*T**:

$$0 \rightarrow \wedge^2 T^*M(2) \rightarrow \wedge^2 T^* \rightarrow T^*M(2);$$

from $\nabla \in \mathbf{p}$ we get a splitting $\wedge^2 \mathcal{T}^* \cong \mathcal{T}^* M(2) \oplus \wedge^2 \mathcal{T}^* M(2)$. Induced connection:

$$\nabla_{\mathbf{a}}^{\wedge^{2}\mathcal{T}^{*}} \begin{pmatrix} k_{b} \\ \mu_{bc} \end{pmatrix} := \begin{pmatrix} \nabla_{\mathbf{a}}k_{b} - \mu_{bc} \\ \nabla_{\mathbf{a}}\mu_{bc} + 2\mathsf{P}_{\mathbf{a}[b}k_{c]} \end{pmatrix}$$

Get induced bundles and canonical connections.
For Λ²T^{*}:

$$0 \rightarrow \wedge^2 T^*M(2) \rightarrow \wedge^2 T^* \rightarrow T^*M(2);$$

from $\nabla \in \mathbf{p}$ we get a splitting $\wedge^2 \mathcal{T}^* \cong \mathcal{T}^* M(2) \oplus \wedge^2 \mathcal{T}^* M(2)$. Induced connection:

$$\nabla_{a}^{\wedge^{2}\mathcal{T}^{*}}\left(\begin{array}{c}k_{b}\\\mu_{bc}\end{array}\right) := \left(\begin{array}{c}\nabla_{a}k_{b} - \mu_{bc}\\\nabla_{a}\mu_{bc} + 2\mathsf{P}_{a[b}k_{c]}\end{array}\right)$$

► Comparing with the formula for ∇^{prol} we've seen gives:

$$\nabla_{a}^{\text{prol}} \left(\begin{array}{c} k_{b} \\ \mu_{bc} \end{array}\right) := \nabla_{a}^{\wedge^{2}\mathcal{T}^{*}} \left(\begin{array}{c} k_{b} \\ \mu_{bc} \end{array}\right) - \left(\begin{array}{c} 0 \\ W_{bc}{}^{d}{}_{a}k_{d} \end{array}\right).$$

Get induced bundles and canonical connections.
For Λ²T^{*}:

$$0 \rightarrow \wedge^2 T^*M(2) \rightarrow \wedge^2 T^* \rightarrow T^*M(2);$$

from $\nabla \in \mathbf{p}$ we get a splitting $\wedge^2 \mathcal{T}^* \cong \mathcal{T}^* M(2) \oplus \wedge^2 \mathcal{T}^* M(2)$. Induced connection:

$$\nabla_{a}^{\wedge^{2}\mathcal{T}^{*}} \left(\begin{array}{c} k_{b} \\ \mu_{bc} \end{array}\right) := \left(\begin{array}{c} \nabla_{a}k_{b} - \mu_{bc} \\ \nabla_{a}\mu_{bc} + 2\mathsf{P}_{\mathsf{a}[b}k_{c]} \end{array}\right)$$

► Comparing with the formula for ∇^{prol} we've seen gives:

$$\nabla_{a}^{\mathrm{prol}} \left(\begin{array}{c} k_{b} \\ \mu_{bc} \end{array}\right) := \nabla_{a}^{\wedge^{2}\mathcal{T}^{*}} \left(\begin{array}{c} k_{b} \\ \mu_{bc} \end{array}\right) - \left(\begin{array}{c} 0 \\ W_{bc}{}^{d}{}_{a}k_{d} \end{array}\right).$$

▶ Remark: $\mathcal{D}^{\wedge^2 \mathcal{T}^*}$: $k_a \mapsto \nabla_{(a} k_{b)}$ is a **BGG operator**.

$$TM_{\#} \to \mathcal{T} \to M.$$

There is a canonical line bundle M_# → M (the total space is the Thomas cone) such that TM_# factors over the (standard) tractor bundle T := (T^{*})^{*}:

$$TM_{\#} \to \mathcal{T} \to M.$$

• Equipped with a connection $\nabla^{\#}$ compatible with $\nabla^{\mathcal{T}}$.

$$TM_{\#} \to \mathcal{T} \to M.$$

- Equipped with a connection $\nabla^{\#}$ compatible with $\nabla^{\mathcal{T}}$.
- ► For metric g, may identify the total space M_# associated to [∇^g] with the metric cone.

$$TM_{\#} \to \mathcal{T} \to M.$$

- Equipped with a connection $\nabla^{\#}$ compatible with $\nabla^{\mathcal{T}}$.
- For metric g, may identify the total space M_# associated to [∇^g] with the metric cone.
- If g Einstein, may identify $\nabla^{\#}$ with $\nabla^{\mathcal{T}}$.

$$TM_{\#} \to \mathcal{T} \to M.$$

- Equipped with a connection $\nabla^{\#}$ compatible with $\nabla^{\mathcal{T}}$.
- For metric g, may identify the total space M_# associated to [∇^g] with the metric cone.
- If g Einstein, may identify $\nabla^{\#}$ with $\nabla^{\mathcal{T}}$.
- ▶ Then, since $\nabla^{\mathcal{T}} h = 0$, $\operatorname{Hol}(\nabla^{\mathcal{T}}) \subseteq \operatorname{SO}(h)$.

Einstein-Sasaki geometry via projective holonomy

 If (M, g, k) is Sasaki-Einstein, there is J ∈ End T compatible with g and satisfying ∇^TJ = 0. Einstein-Sasaki geometry via projective holonomy

 If (M,g,k) is Sasaki-Einstein, there is J ∈ End T compatible with g and satisfying ∇^TJ = 0.

Theorem

If (M, g, k) is Sasaki-Einstein, the projective holonomy of the projective structure $[\nabla^g]$ carries a **parallel tractor Hermitian** structure (h, \mathbb{J}) ; equivalently, its holonomy satisfies

 $\mathsf{Hol}(\nabla^{\mathcal{T}}) \subseteq \mathsf{U}(p,q),$

where g has signature (2p - 1, 2q).

Einstein-Sasaki geometry via projective holonomy

 If (M,g,k) is Sasaki-Einstein, there is J ∈ End T compatible with g and satisfying ∇^TJ = 0.

Theorem

If (M, g, k) is Sasaki-Einstein, the projective holonomy of the projective structure $[\nabla^g]$ carries a **parallel tractor Hermitian** structure (h, \mathbb{J}) ; equivalently, its holonomy satisfies

 $\operatorname{Hol}(\nabla^{\mathcal{T}}) \subseteq \operatorname{U}(\overline{p,q)},$

where g has signature (2p - 1, 2q).

In fact, if M simply connected, there is a parallel complex tractor volume form, so that Hol(∇^T) ⊆ SU(p, q) (alternatively, work with restricted holonomy).

▶ In general, $Hol(\nabla^T) \subseteq SL(2m+2, \mathbb{R})$

- ▶ In general, $Hol(\nabla^T) \subseteq SL(2m+2, \mathbb{R})$
- As in Riemannian geometry, we can investigate consequences of Hol(∇^T) ⊆ H ⊊ SL(2m + 2, ℝ).

- ▶ In general, $\mathsf{Hol}(\nabla^{\mathcal{T}}) \subseteq \mathsf{SL}(2m+2,\mathbb{R})$
- As in Riemannian geometry, we can investigate consequences of Hol(∇^T) ⊆ H ⊊ SL(2m + 2, ℝ).
- Such a holonomy reduction determines a stratification of M into "curved orbits" M_i, each equipped with an induced geometry; this partition is modeled on the H-orbit decomposition of the model projective sphere (S^{2m+1}, p̄).

- ▶ In general, $\mathsf{Hol}(\nabla^{\mathcal{T}}) \subseteq \mathsf{SL}(2m+2,\mathbb{R})$
- As in Riemannian geometry, we can investigate consequences of Hol(∇^T) ⊆ H ⊊ SL(2m + 2, ℝ).
- ► Such a holonomy reduction determines a stratification of M into "curved orbits" M_i, each equipped with an induced geometry; this partition is modeled on the H-orbit decomposition of the model projective sphere (S^{2m+1}, p).
- In particular, we an ask about converse of previous theorem: Given (M, p) with Hol(∇^T) ⊆ U(p, q), what is the stratification, and what are the induced geometries?

- ► In general, $\mathsf{Hol}(\nabla^{\mathcal{T}}) \subseteq \mathsf{SL}(2m+2,\mathbb{R})$
- As in Riemannian geometry, we can investigate consequences of Hol(∇^T) ⊆ H ⊊ SL(2m + 2, ℝ).
- ► Such a holonomy reduction determines a stratification of M into "curved orbits" M_i, each equipped with an induced geometry; this partition is modeled on the H-orbit decomposition of the model projective sphere (S^{2m+1}, p).
- In particular, we an ask about converse of previous theorem: Given (M, p) with Hol(∇^T) ⊆ U(p, q), what is the stratification, and what are the induced geometries?
- We can also ask this for each of the intermediate groups:

 $U(p,q) = SO(2p,2q) \cap Sp(2m+2,\mathbb{R}) \cap GL(m+1,\mathbb{C})$ $h \qquad \Omega \qquad \mathbb{J}$

- ▶ In general, $\mathsf{Hol}(\nabla^{\mathcal{T}}) \subseteq \mathsf{SL}(2m+2,\mathbb{R})$
- As in Riemannian geometry, we can investigate consequences of Hol(∇^T) ⊆ H ⊊ SL(2m + 2, ℝ).
- ► Such a holonomy reduction determines a stratification of M into "curved orbits" M_i, each equipped with an induced geometry; this partition is modeled on the H-orbit decomposition of the model projective sphere (S^{2m+1}, p).
- In particular, we an ask about converse of previous theorem: Given (M, p) with Hol(∇^T) ⊆ U(p, q), what is the stratification, and what are the induced geometries?
- We can also ask this for each of the intermediate groups:

$$U(p,q) = SO(2p,2q) \cap Sp(2m+2,\mathbb{R}) \cap GL(m+1,\mathbb{C})$$

h Ω \mathbb{J}

(Actually, in the last case, $SL(2m+2,\mathbb{R}) \cap GL(m+1,\mathbb{C}) = SL(m+1,\mathbb{C}) \times U(1).)$

- ► SO(2*p*, 2*q*), tractor metric *h* (Cap-Gover-Hammerl)
 - ► Open orbits *M*_±: Einstein (pseudo-)Riemannian structure
 - ► Separating hypersurface *M*₀: Conformal structure (yields compactification!)
 - If *h* definite (pq = 0) then $M = M_{\pm}$.
 - Underlying object: Weighted function σ , zero locus is M_0 .

- ► SO(2*p*, 2*q*), tractor metric *h* (Cap-Gover-Hammerl)
 - ▶ Open orbits *M*_±: Einstein (pseudo-)Riemannian structure
 - ► Separating hypersurface *M*₀: Conformal structure (yields compactification!)
 - If *h* definite (pq = 0) then $M = M_{\pm}$.
 - Underlying object: Weighted function σ , zero locus is M_0 .
- ► Sp $(2m + 2, \mathbb{R})$, tractor symplectic form Ω (Armstrong)
 - ► Underlying torsion-free contact projective structure on *M* (generalized Fefferman construction).
 - Underlying object: Normal solution k_a of Killing-type equation.

- ► SO(2p, 2q), tractor metric h (Cap-Gover-Hammerl)
 - ► Open orbits *M*_±: Einstein (pseudo-)Riemannian structure
 - ➤ Separating hypersurface M₀: Conformal structure (yields compactification!)
 - If *h* definite (pq = 0) then $M = M_{\pm}$.
 - Underlying object: Weighted function σ , zero locus is M_0 .
- Sp $(2m + 2, \mathbb{R})$, tractor symplectic form Ω (Armstrong)
 - ► Underlying torsion-free contact projective structure on *M* (generalized Fefferman construction).
 - ▶ Underlying object: Normal solution k_a of Killing-type equation.
- ► GL(m+1, C), tractor complex structure J (Armstrong)
 - Locally fibers (with model fiber U(1)) over an integrable c-projective structure.*
 - Underlying object: Normal solution k^a of adjoint BGG operator.

(*Under additional condition: k^a is a projective symmetry, equivalently, $W_{da}{}^b{}_c k^d = 0$ —always satisfied in Sasaki-Einstein case.)

Projective structures \underline{w} parallel tractor Hermitian structures

Theorem (Gover-Neusser-<u>W</u>)

Let (M, \mathbf{p}) be a projective manifold of odd dim. $2m + 1 \ge 5$ equipped with a parallel tractor Hermitian structure (h, \mathbb{J}) , equivalently, a holonomy reduction of $\nabla^{\mathcal{T}}$ to U(p, q). Then, M is stratified as $M_+ \cup M_0 \cup M_-$ (if h is definite, $M = M_{\pm}$, and $M_0 = \emptyset$), and \mathbb{J} determines an underlying projective symmetry k. The components of the stratifications each inherit a geometry canonically determined by $(M, \mathbf{p}; h, \mathbb{J})$.

Projective structures w parallel tractor Hermitian structures

Theorem (Gover-Neusser-<u>W</u>)

Let (M, \mathbf{p}) be a projective manifold of odd dim. $2m + 1 \ge 5$ equipped with a parallel tractor Hermitian structure (h, \mathbb{J}) , equivalently, a holonomy reduction of $\nabla^{\mathcal{T}}$ to U(p, q). Then, M is stratified as $M_+ \cup M_0 \cup M_-$ (if h is definite, $M = M_{\pm}$, and $M_0 = \emptyset$), and \mathbb{J} determines an underlying projective symmetry k. The components of the stratifications each inherit a geometry canonically determined by $(M, \mathbf{p}; h, \mathbb{J})$.

 M_± are open and equipped with Sasaki-Einstein structures (g_±, k) with Ricci curvature Ric_± = 2mg_±; g₊ has signature (2p − 1, 2q), and g_− has signature (2q − 1, 2p). The metrics g_± are compatible with p in that ∇^{g_±} ∈ p|_{M₊}.

Projective structures \underline{w} parallel tractor Hermitian structures

Theorem (Gover-Neusser-<u>W</u>)

Let (M, \mathbf{p}) be a projective manifold of odd dim. $2m + 1 \ge 5$ equipped with a parallel tractor Hermitian structure (h, \mathbb{J}) , equivalently, a holonomy reduction of $\nabla^{\mathcal{T}}$ to U(p, q). Then, M is stratified as $M_+ \cup M_0 \cup M_-$ (if h is definite, $M = M_{\pm}$, and $M_0 = \emptyset$), and \mathbb{J} determines an underlying projective symmetry k. The components of the stratifications each inherit a geometry canonically determined by $(M, \mathbf{p}; h, \mathbb{J})$.

- M_± are open and equipped with Sasaki-Einstein structures (g_±, k) with Ricci curvature Ric_± = 2mg_±; g₊ has signature (2p − 1, 2q), and g_− has signature (2q − 1, 2p). The metrics g_± are compatible with p in that ∇^{g_±} ∈ p|_{M₊}.
- ► M₀ is a smooth separating hypersurface and is equipped with an oriented (local) Fefferman conformal structure c of signature (2p - 1, 2q - 1). In particular, (M₀, ±c) is a projective infinity for (M_±, g_±).

The (local) fibration by k

In the previous picture, we can form the local leaf space *M* of integral curves of *k*; it inherits a c-projective structure (*J*, **q**). Since *k* is tangent to *M*₀, we get a stratification *M* = *M*₊ ∪ *M*₀ ∪ *M*₋:

The (local) fibration by k

- In the previous picture, we can form the local leaf space *M* of integral curves of *k*; it inherits a c-projective structure (*J*, **q**). Since *k* is tangent to *M*₀, we get a stratification *M* = *M*₊ ∪ *M*₀ ∪ *M*₋:
 - \widetilde{M}_{\pm} are open and equipped with Kähler-Einstein metrics \widetilde{g}_{\pm} .

The (local) fibration by k

- In the previous picture, we can form the local leaf space *M* of integral curves of *k*; it inherits a c-projective structure (*J*, **q**). Since *k* is tangent to *M*₀, we get a stratification *M* = *M*₊ ∪ *M*₀ ∪ *M*₋:
 - M_{\pm} are open and equipped with Kähler-Einstein metrics \tilde{g}_{\pm} .
 - ► M₀ inherits from a CR-structure; the Fefferman conformal structure it induces is c.

Constructing examples

► The first theorem gives a way to construct examples (with a single curved orbit, and in particular with M₀ = Ø:

Constructing examples

- ► The first theorem gives a way to construct examples (with a single curved orbit, and in particular with M₀ = Ø:
- From Sasaki-Einstein structure (M, g, k), build the parallel tractor data h, J on the underlying projective structure (M, [∇^g]):

$$h := \begin{pmatrix} g_{ab} & 0 \\ 0 & 1 \end{pmatrix}, \qquad \mathbb{J} := \begin{pmatrix} \nabla_b k^a & k^a \\ -k_b & 0 \end{pmatrix}$$

Constructing examples II

On the other hand, many interesting phenomena (e.g., compactification) occur in the case M₀ ≠ Ø.

Constructing examples II

➤ On the other hand, many interesting phenomena (e.g., compactification) occur in the case M₀ ≠ Ø.

Theorem (Gover-Neusser-<u>W</u>)

Let \widetilde{M}_0 be a real-analytic, Levi-nondegenerate real submanifold of codimension 1 in \mathbb{C}^m for which the CR obstruction \mathcal{O} of the induced CR structure $(\widetilde{H}_0, \widetilde{J})$ vanishes. Then, there is a projective structure (M, \mathbf{p}) equipped with a parallel tractor Hermitian structure (h, \mathbb{J}) for which $(M_0, \widetilde{H}_0, \widetilde{J})$ is the CR structure underlying the hypersurface curved orbit (M_0, \mathbf{c}) .

Constructing examples II

On the other hand, many interesting phenomena (e.g., compactification) occur in the case M₀ ≠ Ø.

Theorem (Gover-Neusser-W)

Let \widetilde{M}_0 be a real-analytic, Levi-nondegenerate real submanifold of codimension 1 in \mathbb{C}^m for which the CR obstruction \mathcal{O} of the induced CR structure $(\widetilde{H}_0, \widetilde{J})$ vanishes. Then, there is a projective structure (M, \mathbf{p}) equipped with a parallel tractor Hermitian structure (h, \mathbb{J}) for which $(M_0, \widetilde{H}_0, \widetilde{J})$ is the CR structure underlying the hypersurface curved orbit (M_0, \mathbf{c}) .

Proof (Sketch).

Build Fefferman conformal construction, carry out Fefferman-Graham ambient metric construction, interpret in projective terms, use parallel tractor extension result. Thank you.