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Sasaki geometry

I A Sasaki structure on a manifold (M, g) is a complex structure
J on its metric cone (M̂ := M × R+, h := dr2 + r2g) such
that (h, J) is a Kähler structure on M̂.

I “Odd-dimensional version of Kähler geometry”
I We can use the homogeneity of the structure to translate this

into a condition on M. In particular, identify M ↔ M × {1}
and set k := J(r∂r )|M ∈ Γ(TM).

Definition
A Sasaki manifold is a triple (M, g , k) where g is a metric, and
k ∈ Γ(TM) satisfies
(0) gabk

akb = 1
(1) ∇(akb) = 0 (equivalently, Lkg = 0, i.e., k Killing)
(2) ∇a∇bk

c = −gabkc + δcakb
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Sasaki geometry via projective

I The curvature R of a (t.-f., special) affine connection ∇
decomposes as

Rab
c
d = Wab

c
d︸ ︷︷ ︸

Weyl

+ 2δc [a Pb]d︸︷︷︸
Schouten

Theorem (Gover-Neusser-W)

A triple (M, g , k) defines a Sasaki manifold iff
(0) gabk

akb = 1
(1) ∇(akb) = 0 (k Killing)

(2) Wab
c
dk

d = 0 and Pabk
akb = 1 .
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Prolonging the Killing-type equation ∇(akb) = 0

I For any ka ∈ Γ(T ∗M), set µab := ∇[akb] = 0 ∈ Γ(∧2T ∗M).

I Differentiating gives ∇aµbc = Rbc
d
akd .

I So, ∇(akb) = 0 is equivalent to{
0 = ∇akb − µab
0 = ∇aµbc − Rbc

d
akd

.

Proposition

Solutions of ∇(akb) = 0 are in 1-1 correspondence with sections of
T ∗M ⊕∧2T ∗M parallel w.r.t.

∇prol
a

(
kb
µbc

)
:=

(
∇akb − µbc

∇aµbc + 2Pa[bkc]

)
−
(

0
Wbc

d
akd

)
.
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Projective geometry: A one-slide primer

Definition
A projective structure on a manifold M is an equivalence class
p := [∇] of t.-f. connections where ∇ ∼ ∇′ iff ∇,∇′ have the
same unparameterized geodesics.

I Fundamental curvature: Projective Weyl curvature W

I dimM = n + 1: E(1) := (∧n+1TM)1/(n+2), E(w) := E(1)⊗w .

I ∃ a canonical normal (co)tractor connection ∇T on T ∗
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Projective tractor 2-forms

I Get induced bundles and canonical connections.

I For Λ2T ∗:

0→ ∧2T ∗M(2)→ ∧2T ∗ → T ∗M(2);

from ∇ ∈ p we get a splitting ∧2T ∗ ∼= T ∗M(2)⊕∧2T ∗M(2).
I Induced connection:

∇∧2T ∗
a

(
kb
µbc

)
:=

(
∇akb − µbc

∇aµbc + 2Pa[bkc]

)
I Comparing with the formula for ∇prol we’ve seen gives:

∇prol
a

(
kb
µbc

)
:= ∇∧2T ∗

a

(
kb
µbc

)
−
(

0
Wbc

d
akd

)
.

I Remark: D∧2T ∗
: ka 7→ ∇(akb) is a BGG operator.
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The Thomas cone

I There is a canonical line bundle M# → M (the total space is
the Thomas cone) such that TM# factors over the
(standard) tractor bundle T := (T ∗)∗:

TM# → T → M.

I Equipped with a connection ∇# compatible with ∇T .
I For metric g , may identify the total space M# associated to

[∇g ] with the metric cone.
I If g Einstein, may identify ∇# with ∇T .
I Then, since ∇T h = 0, Hol(∇T ) ⊆ SO(h).
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Einstein-Sasaki geometry via projective holonomy

I If (M, g , k) is Sasaki-Einstein, there is J ∈ End T compatible
with g and satisfying ∇T J = 0.

Theorem
If (M, g , k) is Sasaki-Einstein, the projective holonomy of the
projective structure [∇g ] carries a parallel tractor Hermitian
structure (h, J); equivalently, its holonomy satisfies

Hol(∇T ) ⊆ U(p, q),

where g has signature (2p − 1, 2q).

I In fact, if M simply connected, there is a parallel complex
tractor volume form, so that Hol(∇T ) ⊆ SU(p, q)
(alternatively, work with restricted holonomy).
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Holonomy reductions of projective structures
I In general, Hol(∇T ) ⊆ SL(2m + 2,R)

I As in Riemannian geometry, we can investigate consequences
of Hol(∇T ) ⊆ H ( SL(2m + 2,R).

I Such a holonomy reduction determines a stratification of M
into “curved orbits” Mi , each equipped with an induced
geometry; this partition is modeled on the H-orbit
decomposition of the model projective sphere (S2m+1, p̄).

I In particular, we an ask about converse of previous theorem:
Given (M,p) with Hol(∇T ) ⊆ U(p, q), what is the
stratification, and what are the induced geometries?

I We can also ask this for each of the intermediate groups:

U(p, q) = SO(2p, 2q) ∩ Sp(2m + 2,R) ∩ GL(m + 1,C)
h Ω J

(Actually, in the last case,
SL(2m + 2,R) ∩ GL(m + 1,C) = SL(m + 1,C)× U(1).)
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Holonomy reductions of projective structures
I SO(2p, 2q), tractor metric h (Cap-Gover-Hammerl)

I Open orbits M±: Einstein (pseudo-)Riemannian structure
I Separating hypersurface M0: Conformal structure (yields

compactification!)
If h definite (pq = 0) then M = M±.

I Underlying object: Weighted function σ, zero locus is M0.

I Sp(2m + 2,R), tractor symplectic form Ω (Armstrong)
I Underlying torsion-free contact projective structure on M

(generalized Fefferman construction).
I Underlying object: Normal solution ka of Killing-type equation.

I GL(m + 1,C), tractor complex structure J (Armstrong)
I Locally fibers (with model fiber U(1)) over an integrable

c-projective structure.*
I Underlying object: Normal solution ka of adjoint BGG

operator.
(*Under additional condition: ka is a projective symmetry,
equivalently, Wda

b
ck

d = 0—always satisfied in Sasaki-Einstein
case.)
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operator.
(*Under additional condition: ka is a projective symmetry,
equivalently, Wda

b
ck

d = 0—always satisfied in Sasaki-Einstein
case.)



Holonomy reductions of projective structures
I SO(2p, 2q), tractor metric h (Cap-Gover-Hammerl)

I Open orbits M±: Einstein (pseudo-)Riemannian structure
I Separating hypersurface M0: Conformal structure (yields
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equivalently, Wda
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Projective structures w parallel tractor Hermitian structures
Theorem (Gover-Neusser-W)

Let (M,p) be a projective manifold of odd dim. 2m + 1 ≥ 5
equipped with a parallel tractor Hermitian structure (h, J),
equivalently, a holonomy reduction of ∇T to U(p, q).
Then, M is stratified as M+ ∪M0 ∪M− (if h is definite, M = M±,
and M0 = ∅), and J determines an underlying projective symmetry
k . The components of the stratifications each inherit a geometry
canonically determined by (M,p; h, J).

I M± are open and equipped with Sasaki-Einstein structures
(g±, k) with Ricci curvature Ric± = 2mg±; g+ has signature
(2p − 1, 2q), and g− has signature (2q − 1, 2p). The metrics
g± are compatible with p in that ∇g± ∈ p|M± .

I M0 is a smooth separating hypersurface and is equipped with
an oriented (local) Fefferman conformal structure c of
signature (2p − 1, 2q − 1). In particular, (M0,±c) is a
projective infinity for (M±, g±).
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The (local) fibration by k

I In the previous picture, we can form the local leaf space M̃ of
integral curves of k ; it inherits a c-projective structure (J,q).
Since k is tangent to M0, we get a stratification
M̃ = M̃+ ∪ M̃0 ∪ M̃−:

I M̃± are open and equipped with Kähler-Einstein metrics g̃±.
I M̃0 inherits from a CR-structure; the Fefferman conformal

structure it induces is c.
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Constructing examples

I The first theorem gives a way to construct examples (with a
single curved orbit, and in particular with M0 = ∅:

I From Sasaki-Einstein structure (M, g , k), build the parallel
tractor data h, J on the underlying projective structure
(M, [∇g ]):

h :=

(
gab 0
0 1

)
, J :=

(
∇bk

a ka

−kb 0

)
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Constructing examples II

I On the other hand, many interesting phenomena (e.g.,
compactification) occur in the case M0 6= ∅.

Theorem (Gover-Neusser-W)

Let M̃0 be a real-analytic, Levi-nondegenerate real submanifold of
codimension 1 in Cm for which the CR obstruction O of the
induced CR structure (H̃0, J̃) vanishes. Then, there is a projective
structure (M,p) equipped with a parallel tractor Hermitian
structure (h, J) for which (M0, H̃0, J̃) is the CR structure
underlying the hypersurface curved orbit (M0, c).

Proof (Sketch).

Build Fefferman conformal construction, carry out
Fefferman-Graham ambient metric construction, interpret in
projective terms, use parallel tractor extension result.
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Thank you.


