Sasaki-Einstein metrics and their compactifications via projective geometry

Travis Willse Joint w A. Rod Gover (U Auckland) and Katharina Neusser (Charles U)

University of Vienna

38th Winter School – Geometry and Physics, Srní, 2018 January 15

K □ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ | 콜 | ④ Q (2)

A Sasaki structure on a manifold (M, g) is a complex structure $\mathbb J$ on its metric cone $(\widehat M:=M\times \mathbb R_+, h:=dr^2+r^2g)$ such that (h, \mathbb{J}) is a Kähler structure on \hat{M} .

K □ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ | 콜 | ④ Q (2)

A Sasaki structure on a manifold (M, g) is a complex structure $\mathbb J$ on its metric cone $(\widehat M:=M\times \mathbb R_+, h:=dr^2+r^2g)$ such that (h, \mathbb{J}) is a Kähler structure on \hat{M} .

K □ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ | 콜 | ④ Q (2)

 \rightarrow "Odd-dimensional version of Kähler geometry"

- A Sasaki structure on a manifold (M, g) is a complex structure $\mathbb J$ on its metric cone $(\widehat M:=M\times \mathbb R_+, h:=dr^2+r^2g)$ such that (h, \mathbb{J}) is a Kähler structure on M.
- ► "Odd-dimensional version of Kähler geometry"
- \triangleright We can use the homogeneity of the structure to translate this into a condition on M. In particular, identify $M \leftrightarrow M \times \{1\}$ and set $k := \mathbb{J}(r\partial_r)|_M \in \Gamma(TM)$.

- A Sasaki structure on a manifold (M, g) is a complex structure $\mathbb J$ on its metric cone $(\widehat M:=M\times \mathbb R_+, h:=dr^2+r^2g)$ such that (h, \overline{J}) is a Kähler structure on \hat{M} .
- ► "Odd-dimensional version of Kähler geometry"
- \triangleright We can use the homogeneity of the structure to translate this into a condition on M. In particular, identify $M \leftrightarrow M \times \{1\}$ and set $k := \mathbb{J}(r\partial_r)|_M \in \Gamma(TM)$.

Definition

A Sasaki manifold is a triple (M, g, k) where g is a metric, and $k \in \Gamma(TM)$ satisfies

- (0) $g_{ab}k^ak^b = 1$
- (1) $\nabla_{(a}k_{b)}=0$ (equivalently, $\mathcal{L}_kg=0$, i.e., k Killing)
- (2) $\nabla_a \nabla_b k^c = -g_{ab}k^c + \delta^c{}_a k_b$

Sasaki geometry via projective

The curvature R of a (t.-f., special) affine connection ∇ decomposes as

$$
R_{ab}^c{}_d = \underbrace{W_{ab}^c{}_d}_{\text{Weyl}} + 2\delta^c{}_{[a}^c \underbrace{P_{b]d}}_{\text{Schouten}}
$$

Sasaki geometry via projective

The curvature R of a (t.-f., special) affine connection ∇ decomposes as

$$
R_{ab}{}^c{}_d = \underbrace{W_{ab}{}^c{}_d}_{\text{Weyl}} + 2\delta^c{}_a \underbrace{P_{b]d}}_{\text{Schouten}}
$$

K □ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ | 콜 | ④ Q (2)

Sasaki geometry via projective

 \blacktriangleright The curvature R of a (t.-f., special) affine connection ∇ decomposes as

$$
R_{ab}{}^c{}_d = \underbrace{W_{ab}{}^c{}_d}_{\text{Weyl}} + 2\delta^c{}_{[a} \underbrace{P_{b]d}}_{\text{Schouten}}
$$

W is projectively invariant

Theorem (Gover-Neusser-W) A triple (M, g, k) defines a Sasaki manifold iff (0) $g_{ab}k^ak^b = 1$ (1) $\nabla_{(a}k_{b)}=0$ (k Killing) (2) $W_{ab}{}^c{}_d k^d = 0$ and $P_{ab} k^a k^b = 1$.

► For any $k_a \in \Gamma(T^*M)$, set $\mu_{ab} := \nabla_{[a} k_{b]} = 0 \in \Gamma(\wedge^2 T^*M)$.

KO → K@ → K 통 → K 통 → 영영 → X → X

► For any $k_a \in \Gamma(T^*M)$, set $\mu_{ab} := \nabla_{[a} k_{b]} = 0 \in \Gamma(\wedge^2 T^*M)$.

► Differentiating gives $\nabla_a \mu_{bc} = R_{bc}{}^d{}_a k_d$.

- ► For any $k_a \in \Gamma(T^*M)$, set $\mu_{ab} := \nabla_{[a} k_{b]} = 0 \in \Gamma(\wedge^2 T^*M)$.
- ► Differentiating gives $\nabla_a \mu_{bc} = R_{bc}{}^d{}_a k_d$.
- \triangleright So, $\nabla_{(a}k_{b)}=0$ is equivalent to

$$
\left\{\n\begin{array}{rcl}\n0 & = & \nabla_a k_b - \mu_{ab} \\
0 & = & \nabla_a \mu_{bc} - R_{bc}{}^d{}_a k_d\n\end{array}\n\right.
$$

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . 1990

- ► For any $k_a \in \Gamma(T^*M)$, set $\mu_{ab} := \nabla_{[a} k_{b]} = 0 \in \Gamma(\wedge^2 T^*M)$.
- ► Differentiating gives $\nabla_a \mu_{bc} = R_{bc}{}^d{}_a k_d$.
- \triangleright So, $\nabla_{(a}k_{b)}=0$ is equivalent to

$$
\left\{\n\begin{array}{rcl}\n0 & = & \nabla_a k_b - \mu_{ab} \\
0 & = & \nabla_a \mu_{bc} - R_{bc}{}^d{}_a k_d\n\end{array}\n\right.
$$

Proposition

Solutions of $\nabla_{(a}k_{b)}=0$ are in 1-1 correspondence with sections of $T^*M \oplus \bigwedge^2 T^*M$ parallel w.r.t.

$$
\nabla_{\mathbf{a}}^{\text{prol}} \left(\begin{array}{c} k_b \\ \mu_{bc} \end{array} \right) := \left(\begin{array}{c} \nabla_{\mathbf{a}} k_b - \mu_{bc} \\ \nabla_{\mathbf{a}} \mu_{bc} + 2 \mathsf{P}_{\mathbf{a}[b} k_{c]} \end{array} \right) - \left(\begin{array}{c} 0 \\ W_{bc}{}^d{}_a k_d \end{array} \right).
$$

Definition

A projective structure on a manifold M is an equivalence class $\bm{{\mathsf{p}}} := [\nabla]$ of t.-f. connections where $\nabla \sim \nabla'$ iff ∇,∇' have the same unparameterized geodesics.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - 10 Q Q Q

Definition

A projective structure on a manifold M is an equivalence class $\bm{{\mathsf{p}}} := [\nabla]$ of t.-f. connections where $\nabla \sim \nabla'$ iff ∇,∇' have the same unparameterized geodesics.

 \blacktriangleright Fundamental curvature: Projective Weyl curvature W

Definition

A projective structure on a manifold M is an equivalence class $\bm{{\mathsf{p}}} := [\nabla]$ of t.-f. connections where $\nabla \sim \nabla'$ iff ∇,∇' have the same unparameterized geodesics.

- \blacktriangleright Fundamental curvature: Projective Weyl curvature W
- ► dim $M=n+1$: $\mathcal{E}(1):=(\wedge^{n+1}TM)^{1/(n+2)},$ $\mathcal{E}(w):=\mathcal{E}(1)^{\otimes w}$.

Definition

A projective structure on a manifold M is an equivalence class $\bm{{\mathsf{p}}} := [\nabla]$ of t.-f. connections where $\nabla \sim \nabla'$ iff ∇,∇' have the same unparameterized geodesics.

- \blacktriangleright Fundamental curvature: Projective Weyl curvature W
- ► dim $M=n+1$: $\mathcal{E}(1):=(\wedge^{n+1}TM)^{1/(n+2)},$ $\mathcal{E}(w):=\mathcal{E}(1)^{\otimes w}$.
- ► Define the cotractor bundle $\mathcal{T}^*:=J^1\mathcal{E}(1)$:

$$
0 \to T^*M \otimes \mathcal{E}(1) \to \mathcal{T}^* \to \mathcal{E}(1) \to 0
$$

Definition

A projective structure on a manifold M is an equivalence class $\bm{{\mathsf{p}}} := [\nabla]$ of t.-f. connections where $\nabla \sim \nabla'$ iff ∇,∇' have the same unparameterized geodesics.

- \blacktriangleright Fundamental curvature: Projective Weyl curvature W
- ► dim $M=n+1$: $\mathcal{E}(1):=(\wedge^{n+1}TM)^{1/(n+2)},$ $\mathcal{E}(w):=\mathcal{E}(1)^{\otimes w}$.
- ► Define the cotractor bundle $\mathcal{T}^*:=J^1\mathcal{E}(1)$:

 $0 \to \mathcal{T}^*M(1) \to \mathcal{T}^* \to \mathcal{E}(1) \to 0$ $B(w) := B \otimes \mathcal{E}(w)$

 \blacktriangleright \exists a canonical **normal (co)tractor connection** $\nabla^{\mathcal{T}}$ on \mathcal{T}^*

 \triangleright Get induced bundles and canonical connections.

 \triangleright Get induced bundles and canonical connections. \blacktriangleright For $\Lambda^2 \mathcal{T}^*$:

$$
0 \to \wedge^2 T^*M(2) \to \wedge^2 T^* \to T^*M(2);
$$

from $\nabla \in \mathsf{p}$ we get a splitting $\wedge^2\mathcal{T}^*\cong \mathcal{T}^*\mathcal{M}(2)\oplus \wedge^2\mathcal{T}^*\mathcal{M}(2).$

 \triangleright Get induced bundles and canonical connections. \blacktriangleright For $\Lambda^2 \mathcal{T}^*$:

$$
0 \to \wedge^2 T^*M(2) \to \wedge^2 T^* \to T^*M(2);
$$

from $\nabla \in \mathsf{p}$ we get a splitting $\wedge^2\mathcal{T}^*\cong \mathcal{T}^*\mathcal{M}(2)\oplus \wedge^2\mathcal{T}^*\mathcal{M}(2).$ \blacktriangleright Induced connection:

$$
\nabla_{a}^{\wedge^2\mathcal{T}^*}\left(\begin{array}{c}k_b\\ \mu_{bc}\end{array}\right):=\left(\begin{array}{c}\nabla_a k_b-\mu_{bc}\\ \nabla_a\mu_{bc}+2P_{a[b}k_{c]}\end{array}\right)
$$

K ロ K イ団 K K モ K K E K H H D V Q Q V

 \triangleright Get induced bundles and canonical connections. \blacktriangleright For $\Lambda^2 \mathcal{T}^*$:

$$
0 \to \wedge^2 T^*M(2) \to \wedge^2 T^* \to T^*M(2);
$$

from $\nabla \in \mathsf{p}$ we get a splitting $\wedge^2\mathcal{T}^*\cong \mathcal{T}^*\mathcal{M}(2)\oplus \wedge^2\mathcal{T}^*\mathcal{M}(2).$ \blacktriangleright Induced connection:

$$
\nabla_{a}^{\wedge^{2}\mathcal{T}^{*}}\left(\begin{array}{c}k_{b}\\ \mu_{bc}\end{array}\right):=\left(\begin{array}{c}\nabla_{a}k_{b}-\mu_{bc}\\ \nabla_{a}\mu_{bc}+2\mathsf{P}_{a[b}k_{c]}\end{array}\right)
$$

Comparing with the formula for ∇^{pol} we've seen gives:

$$
\nabla_{\mathsf{a}}^{\text{prol}} \left(\begin{array}{c} k_b \\ \mu_{bc} \end{array} \right) := \nabla_{\mathsf{a}}^{\wedge^2\mathcal{T}^*} \left(\begin{array}{c} k_b \\ \mu_{bc} \end{array} \right) - \left(\begin{array}{c} 0 \\ W_{bc}{}^d{}_a k_d \end{array} \right).
$$

 \triangleright Get induced bundles and canonical connections. \blacktriangleright For $\Lambda^2 \mathcal{T}^*$:

$$
0 \to \wedge^2 T^*M(2) \to \wedge^2 T^* \to T^*M(2);
$$

from $\nabla \in \mathsf{p}$ we get a splitting $\wedge^2\mathcal{T}^*\cong \mathcal{T}^*\mathcal{M}(2)\oplus \wedge^2\mathcal{T}^*\mathcal{M}(2).$ \blacktriangleright Induced connection:

$$
\nabla_{a}^{\wedge^2 \mathcal{T}^*} \left(\begin{array}{c} k_b \\ \mu_{bc} \end{array} \right) := \left(\begin{array}{c} \nabla_a k_b - \mu_{bc} \\ \nabla_a \mu_{bc} + 2P_{a[b} k_{c]} \end{array} \right)
$$

 \triangleright Comparing with the formula for ∇^{prol} we've seen gives:

$$
\nabla_{\mathsf{a}}^{\text{prol}} \left(\begin{array}{c} k_b \\ \mu_{bc} \end{array} \right) := \nabla_{\mathsf{a}}^{\wedge^2\mathcal{T}^*} \left(\begin{array}{c} k_b \\ \mu_{bc} \end{array} \right) - \left(\begin{array}{c} 0 \\ W_{bc}{}^d{}_a k_d \end{array} \right).
$$

► Remark: $\mathcal{D}^{\wedge^2\mathcal{T}^*}: k_a \mapsto \nabla_{(a}k_{b)}$ is a \mathbf{BGG} operator.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . 900

► There is a canonical line bundle $M_{\#} \rightarrow M$ (the total space is the Thomas cone) such that $TM_{\#}$ factors over the (standard) tractor bundle $\mathcal{T} := (\mathcal{T}^*)^*$:

 $TM_{\#} \to \mathcal{T} \to M$.

► There is a canonical line bundle $M_{\#} \rightarrow M$ (the total space is the Thomas cone) such that $TM_{\#}$ factors over the (standard) tractor bundle $\mathcal{T} := (\mathcal{T}^*)^*$:

$$
TM_{\#}\to \mathcal{T}\to M.
$$

 \blacktriangleright Equipped with a connection $\nabla^{\#}$ compatible with $\nabla^{\mathcal{T}}.$

► There is a canonical line bundle $M_{\#} \rightarrow M$ (the total space is the Thomas cone) such that $TM_{\#}$ factors over the (standard) tractor bundle $\mathcal{T} := (\mathcal{T}^*)^*$:

$$
TM_{\#}\to \mathcal{T}\to M.
$$

- \blacktriangleright Equipped with a connection $\nabla^{\#}$ compatible with $\nabla^{\mathcal{T}}.$
- For metric g, may identify the total space $M_{\#}$ associated to $[\nabla^g]$ with the metric cone.

► There is a canonical line bundle $M_{\#} \rightarrow M$ (the total space is the Thomas cone) such that $TM_{\#}$ factors over the (standard) tractor bundle $\mathcal{T} := (\mathcal{T}^*)^*$:

$$
TM_{\#}\to \mathcal{T}\to M.
$$

-
◆ ロ ▶ → ○ ▶ → 로 ▶ → 로 ▶ │ 로 │ ◆ 9,9,0°

- \blacktriangleright Equipped with a connection $\nabla^{\#}$ compatible with $\nabla^{\mathcal{T}}.$
- For metric g, may identify the total space $M_{\#}$ associated to $[\nabla^g]$ with the metric cone.
- \blacktriangleright If g Einstein, may identify $\nabla^{\#}$ with $\nabla^{\mathcal{T}}.$

► There is a canonical line bundle $M_{\#} \rightarrow M$ (the total space is the Thomas cone) such that $TM_{\#}$ factors over the (standard) tractor bundle $\mathcal{T} := (\mathcal{T}^*)^*$:

$$
TM_{\#}\to \mathcal{T}\to M.
$$

- \blacktriangleright Equipped with a connection $\nabla^{\#}$ compatible with $\nabla^{\mathcal{T}}.$
- For metric g, may identify the total space $M_{\#}$ associated to $[\nabla^g]$ with the metric cone.
- \blacktriangleright If g Einstein, may identify $\nabla^{\#}$ with $\nabla^{\mathcal{T}}.$
- ► Then, since $\nabla^{\mathcal{T}}h=0$, Hol $(\nabla^{\mathcal{T}})\subseteq$ SO(*h*).

Einstein-Sasaki geometry via projective holonomy

► If (M, g, k) is Sasaki-Einstein, there is $\mathbb{J} \in \mathsf{End}\,\mathcal{T}$ compatible with g and satisfying $\nabla^{\mathcal{T}} \mathbb{J} = 0$.

Einstein-Sasaki geometry via projective holonomy

► If (M, g, k) is Sasaki-Einstein, there is $\mathbb{J} \in \text{End } \mathcal{T}$ compatible with g and satisfying $\nabla^{\mathcal{T}} \mathbb{J} = 0$.

Theorem

If (M, g, k) is Sasaki-Einstein, the projective holonomy of the projective structure $[\nabla^g]$ carries a **parallel tractor Hermitian** structure (h, J) ; equivalently, its holonomy satisfies

 $\text{\sf Hol}(\nabla^\mathcal{T}) \subseteq \text{\sf U}(p,q),$

where g has signature $(2p - 1, 2q)$.

Einstein-Sasaki geometry via projective holonomy

► If (M, g, k) is Sasaki-Einstein, there is $\mathbb{J} \in \text{End } \mathcal{T}$ compatible with g and satisfying $\nabla^{\mathcal{T}} \mathbb{J} = 0$.

Theorem

If (M, g, k) is Sasaki-Einstein, the projective holonomy of the projective structure $[\nabla^g]$ carries a **parallel tractor Hermitian** structure (h, J) ; equivalently, its holonomy satisfies

 $\text{\sf Hol}(\nabla^\mathcal{T}) \subseteq \text{\sf U}(p,q),$

where g has signature $(2p - 1, 2q)$.

In fact, if M simply connected, there is a parallel complex tractor volume form, so that Hol $(\nabla^\mathcal{T}) \subseteq \mathsf{SU}(p,q)$ (alternatively, work with restricted holonomy).

KO K K (D K L E K K E K K K K K K K K K K

KO → K@ → K 통 → K 통 → 영영 → X → X

 \blacktriangleright In general, $\mathsf{Hol}(\nabla^\mathcal{T})\subseteq \mathsf{SL}(2m+2,\mathbb{R})$

- \blacktriangleright In general, $\mathsf{Hol}(\nabla^\mathcal{T})\subseteq \mathsf{SL}(2m+2,\mathbb{R})$
- \triangleright As in Riemannian geometry, we can investigate consequences of $\mathsf{Hol}(\nabla^\mathcal{T}) \subseteq H \subsetneq \mathsf{SL}(2m+2,\mathbb{R}).$

K □ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ | 콜 | ④ Q (2)

- \blacktriangleright In general, $\mathsf{Hol}(\nabla^\mathcal{T})\subseteq \mathsf{SL}(2m+2,\mathbb{R})$
- \triangleright As in Riemannian geometry, we can investigate consequences of $\mathsf{Hol}(\nabla^\mathcal{T}) \subseteq H \subsetneq \mathsf{SL}(2m+2,\mathbb{R}).$
- \triangleright Such a holonomy reduction determines a stratification of M into "curved orbits" M_i , each equipped with an induced geometry; this partition is modeled on the H-orbit decomposition of the model projective sphere $(\mathbb{S}^{2m+1}, \bar{\mathsf{p}})$.

-
◆ ロ ▶ → ○ ▶ → 로 ▶ → 로 ▶ │ 로 │ ◆ 9,9,0°

- \blacktriangleright In general, $\mathsf{Hol}(\nabla^\mathcal{T})\subseteq \mathsf{SL}(2m+2,\mathbb{R})$
- \triangleright As in Riemannian geometry, we can investigate consequences of $\mathsf{Hol}(\nabla^\mathcal{T}) \subseteq H \subsetneq \mathsf{SL}(2m+2,\mathbb{R}).$
- \triangleright Such a holonomy reduction determines a stratification of M into "curved orbits" M_i , each equipped with an induced geometry; this partition is modeled on the H-orbit decomposition of the model projective sphere $(\mathbb{S}^{2m+1}, \bar{\mathsf{p}})$.
- \blacktriangleright In particular, we an ask about converse of previous theorem: Given (M, \mathbf{p}) with $\text{Hol}(\nabla^{\mathcal{T}}) \subseteq \textsf{U}(p,q)$, what is the stratification, and what are the induced geometries?

- \blacktriangleright In general, $\mathsf{Hol}(\nabla^\mathcal{T})\subseteq \mathsf{SL}(2m+2,\mathbb{R})$
- \triangleright As in Riemannian geometry, we can investigate consequences of $\mathsf{Hol}(\nabla^\mathcal{T}) \subseteq H \subsetneq \mathsf{SL}(2m+2,\mathbb{R}).$
- \triangleright Such a holonomy reduction determines a stratification of M into "curved orbits" M_i , each equipped with an induced geometry; this partition is modeled on the H-orbit decomposition of the model projective sphere $(\mathbb{S}^{2m+1}, \bar{\mathsf{p}})$.
- \blacktriangleright In particular, we an ask about converse of previous theorem: Given (M, \mathbf{p}) with $\text{Hol}(\nabla^{\mathcal{T}}) \subseteq \textsf{U}(p,q)$, what is the stratification, and what are the induced geometries?
- \triangleright We can also ask this for each of the intermediate groups:

 $U(p,q) = SO(2p, 2q) \cap Sp(2m+2, \mathbb{R}) \cap GL(m+1, \mathbb{C})$ h Ω J

- \blacktriangleright In general, $\mathsf{Hol}(\nabla^\mathcal{T})\subseteq \mathsf{SL}(2m+2,\mathbb{R})$
- \triangleright As in Riemannian geometry, we can investigate consequences of $\mathsf{Hol}(\nabla^\mathcal{T}) \subseteq H \subsetneq \mathsf{SL}(2m+2,\mathbb{R}).$
- \triangleright Such a holonomy reduction determines a stratification of M into "curved orbits" M_i , each equipped with an induced geometry; this partition is modeled on the H-orbit decomposition of the model projective sphere $(\mathbb{S}^{2m+1}, \bar{\mathsf{p}})$.
- \blacktriangleright In particular, we an ask about converse of previous theorem: Given (M, \mathbf{p}) with $\text{Hol}(\nabla^{\mathcal{T}}) \subseteq \textsf{U}(p,q)$, what is the stratification, and what are the induced geometries?
- \triangleright We can also ask this for each of the intermediate groups:

$$
\mathsf{U}(p,q) = \mathsf{SO}(2p,2q) \cap \mathsf{Sp}(2m+2,\mathbb{R}) \cap \mathsf{GL}(m+1,\mathbb{C})
$$

 QQ

(Actually, in the last case, $SL(2m + 2, \mathbb{R}) \cap GL(m + 1, \mathbb{C}) = SL(m + 1, \mathbb{C}) \times U(1)$ $SL(2m + 2, \mathbb{R}) \cap GL(m + 1, \mathbb{C}) = SL(m + 1, \mathbb{C}) \times U(1)$ $SL(2m + 2, \mathbb{R}) \cap GL(m + 1, \mathbb{C}) = SL(m + 1, \mathbb{C}) \times U(1)$ $SL(2m + 2, \mathbb{R}) \cap GL(m + 1, \mathbb{C}) = SL(m + 1, \mathbb{C}) \times U(1)$ $SL(2m + 2, \mathbb{R}) \cap GL(m + 1, \mathbb{C}) = SL(m + 1, \mathbb{C}) \times U(1)$ $SL(2m + 2, \mathbb{R}) \cap GL(m + 1, \mathbb{C}) = SL(m + 1, \mathbb{C}) \times U(1)$ $SL(2m + 2, \mathbb{R}) \cap GL(m + 1, \mathbb{C}) = SL(m + 1, \mathbb{C}) \times U(1)$ $SL(2m + 2, \mathbb{R}) \cap GL(m + 1, \mathbb{C}) = SL(m + 1, \mathbb{C}) \times U(1)$ $SL(2m + 2, \mathbb{R}) \cap GL(m + 1, \mathbb{C}) = SL(m + 1, \mathbb{C}) \times U(1)$ $SL(2m + 2, \mathbb{R}) \cap GL(m + 1, \mathbb{C}) = SL(m + 1, \mathbb{C}) \times U(1)$ $SL(2m + 2, \mathbb{R}) \cap GL(m + 1, \mathbb{C}) = SL(m + 1, \mathbb{C}) \times U(1)$.

- \triangleright SO(2p, 2q), tractor metric h (Cap-Gover-Hammerl)
	- \triangleright Open orbits M_{\pm} : Einstein (pseudo-)Riemannian structure
	- \triangleright Separating hypersurface M_0 : Conformal structure (yields compactification!)
		- If h definite ($pq = 0$) then $M = M_{\pm}$.
	- Inderlying object: Weighted function σ , zero locus is M_0 .

K □ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ | 콜 | ④ Q (2)

- \triangleright SO(2p, 2q), tractor metric h (Cap-Gover-Hammerl)
	- \triangleright Open orbits M_{\pm} : Einstein (pseudo-)Riemannian structure
	- \triangleright Separating hypersurface M_0 : Conformal structure (yields compactification!)
		- If h definite ($pq = 0$) then $M = M_{+}$.
	- Inderlying object: Weighted function σ , zero locus is M_0 .
- \blacktriangleright Sp(2m + 2, R), tractor symplectic form Ω (Armstrong)
	- \triangleright Underlying torsion-free contact projective structure on M (generalized Fefferman construction).
	- \triangleright Underlying object: Normal solution k_a of Killing-type equation.

- \triangleright SO(2p, 2q), tractor metric h (Cap-Gover-Hammerl)
	- \triangleright Open orbits M_{+} : Einstein (pseudo-)Riemannian structure
	- \triangleright Separating hypersurface M_0 : Conformal structure (yields compactification!)
		- If h definite ($pq = 0$) then $M = M_{+}$.
	- Inderlying object: Weighted function σ , zero locus is M_0 .
- \blacktriangleright Sp(2m + 2, R), tractor symplectic form Ω (Armstrong)
	- \triangleright Underlying torsion-free contact projective structure on M (generalized Fefferman construction).
	- \triangleright Underlying object: Normal solution k_a of Killing-type equation.
- \blacktriangleright GL($m + 1, \mathbb{C}$), tractor complex structure J (Armstrong)
	- \triangleright Locally fibers (with model fiber U(1)) over an integrable c-projective structure.*
	- \blacktriangleright Underlying object: Normal solution k^a of adjoint BGG operator.

(*Under additional condition: k^a is a projective symmetry, equivalently, $W_{da}{}^b{}_c k^d = 0$ —always satisfied in Sasaki-Einstein case.) Projective structures w parallel tractor Hermitian structures

Theorem (Gover-Neusser-W)

Let (M, p) be a projective manifold of odd dim. $2m + 1 > 5$ equipped with a parallel tractor Hermitian structure (h, J) , equivalently, a holonomy reduction of $\nabla^{\mathcal{T}}$ to $\mathsf{U}(p,q)$. Then, M is stratified as $M_+ \cup M_0 \cup M_-$ (if h is definite, $M = M_+$, and $M_0 = \emptyset$), and J determines an underlying projective symmetry k. The components of the stratifications each inherit a geometry canonically determined by $(M, p; h, \mathbb{J})$.

Projective structures w parallel tractor Hermitian structures

Theorem (Gover-Neusser-W)

Let (M, p) be a projective manifold of odd dim. $2m + 1 > 5$ equipped with a parallel tractor Hermitian structure (h, J) , equivalently, a holonomy reduction of $\nabla^{\mathcal{T}}$ to $\mathsf{U}(p,q)$. Then, M is stratified as $M_+ \cup M_0 \cup M_-$ (if h is definite, $M = M_+$, and $M_0 = \emptyset$), and J determines an underlying projective symmetry k. The components of the stratifications each inherit a geometry canonically determined by $(M, \mathbf{p}; h, \mathbb{J})$.

 \blacktriangleright M_+ are open and equipped with Sasaki-Einstein structures (g_{\pm}, k) with Ricci curvature Ric $_{\pm} = 2mg_{\pm}$; g_{+} has signature $(2p-1, 2q)$, and g₋ has signature $(2q-1, 2p)$. The metrics g_{\pm} are compatible with **p** in that $\nabla^{g_{\pm}} \in \mathbf{p}|_{M_{+}}$.

Projective structures w parallel tractor Hermitian structures

Theorem (Gover-Neusser-W)

Let (M, p) be a projective manifold of odd dim. $2m + 1 > 5$ equipped with a parallel tractor Hermitian structure (h, \mathbb{J}) . equivalently, a holonomy reduction of $\nabla^{\mathcal{T}}$ to $\mathsf{U}(p,q)$. Then, M is stratified as $M_+ \cup M_0 \cup M_-$ (if h is definite, $M = M_+$, and $M_0 = \emptyset$), and J determines an underlying projective symmetry k. The components of the stratifications each inherit a geometry canonically determined by $(M, \mathbf{p}; h, \mathbb{J})$.

- \blacktriangleright M_+ are open and equipped with Sasaki-Einstein structures (g_{\pm}, k) with Ricci curvature Ric $_{\pm} = 2mg_{\pm}$; g_{+} has signature $(2p-1, 2q)$, and g₋ has signature $(2q-1, 2p)$. The metrics g_{\pm} are compatible with **p** in that $\nabla^{g_{\pm}} \in \mathbf{p}|_{M_{+}}$.
- \blacktriangleright M_0 is a smooth separating hypersurface and is equipped with an oriented (local) Fefferman conformal structure c of signature $(2p - 1, 2q - 1)$. In particular, $(M_0, \pm c)$ is a projective infinity for (M_+, g_+) .

The (local) fibration by k

In the previous picture, we can form the local leaf space M of integral curves of k ; it inherits a c-projective structure (J, \mathbf{q}) . Since k is tangent to M_0 , we get a stratification $\widetilde{M} = \widetilde{M}_{+} \cup \widetilde{M}_{0} \cup \widetilde{M}_{-}$

The (local) fibration by k

- In the previous picture, we can form the local leaf space M of integral curves of k; it inherits a c-projective structure (J, \mathbf{q}) . Since k is tangent to M_0 , we get a stratification $\widetilde{M} = M_+ \cup \widetilde{M}_0 \cup \widetilde{M}_-$
	- \widetilde{M}_\pm are open and equipped with Kähler-Einstein metrics \widetilde{g}_{\pm} .

K □ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ | 콜 | ④ Q (2)

The (local) fibration by k

- In the previous picture, we can form the local leaf space M of integral curves of k; it inherits a c-projective structure (J, \mathbf{q}) . Since k is tangent to M_0 , we get a stratification $\widetilde{M} = M_+ \cup \widetilde{M}_0 \cup \widetilde{M}_-$
	- \blacktriangleright M_+ are open and equipped with Kähler-Einstein metrics \tilde{g}_{\pm} .

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ - 코 - 10 9 0 0

 \triangleright M_o inherits from a CR-structure; the Fefferman conformal structure it induces is c.

Constructing examples

 \triangleright The first theorem gives a way to construct examples (with a single curved orbit, and in particular with $M_0 = \emptyset$:

Constructing examples

- \triangleright The first theorem gives a way to construct examples (with a single curved orbit, and in particular with $M_0 = \emptyset$:
- From Sasaki-Einstein structure (M, g, k) , build the parallel tractor data h, \mathbb{J} on the underlying projective structure $(M,[\nabla^g])$:

$$
h:=\begin{pmatrix}g_{ab}&0\\0&1\end{pmatrix},\qquad \mathbb{J}:=\begin{pmatrix}\nabla_b k^a&k^a\\-k_b&0\end{pmatrix}
$$

K □ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ | 콜 | ④ Q (2)

Constructing examples II

 \triangleright On the other hand, many interesting phenomena (e.g., compactification) occur in the case $M_0 \neq \emptyset$.

Constructing examples II

 \triangleright On the other hand, many interesting phenomena (e.g., compactification) occur in the case $M_0 \neq \emptyset$.

Theorem (Gover-Neusser-W)

Let $M₀$ be a real-analytic, Levi-nondegenerate real submanifold of codimension 1 in \mathbb{C}^m for which the CR obstruction $\mathcal O$ of the induced CR structure (H_0, \tilde{J}) vanishes. Then, there is a projective structure (M, p) equipped with a parallel tractor Hermitian structure (h, \mathbb{J}) for which $(M_0, \widetilde{H}_0, \widetilde{J})$ is the CR structure underlying the hypersurface curved orbit (M_0, c) .

Constructing examples II

 \triangleright On the other hand, many interesting phenomena (e.g., compactification) occur in the case $M_0 \neq \emptyset$.

Theorem (Gover-Neusser-W)

Let $M₀$ be a real-analytic, Levi-nondegenerate real submanifold of codimension 1 in \mathbb{C}^m for which the CR obstruction $\mathcal O$ of the induced CR structure (H_0, \tilde{J}) vanishes. Then, there is a projective structure (M, p) equipped with a parallel tractor Hermitian structure (h, \mathbb{J}) for which $(M_0, \widetilde{H}_0, \widetilde{J})$ is the CR structure underlying the hypersurface curved orbit (M_0, c) .

Proof (Sketch).

Build Fefferman conformal construction, carry out Fefferman-Graham ambient metric construction, interpret in projective terms, use parallel tractor extension result.

H

Thank you.