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» We can use the homogeneity of the structure to translate this
into a condition on M. In particular, identify M <+ M x {1}
and set k := J(ro,)|m € T(TM).

Definition

A Sasaki manifold is a triple (M, g, k) where g is a metric, and
k € T(TM) satisfies

(0) gapk?kP =1

(1) V(okp)y = 0 (equivalently, L,g =0, i.e., k Killing)

(2) VaVpk® = —gapk + 0k
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Sasaki geometry via projective

» The curvature R of a (t.-f., special) affine connection V
decomposes as
Rap“a = + 20, Ppa
—~—

Schouten

Theorem (Gover-Neusser-W)

A triple (M, g, k) defines a Sasaki manifold iff
(0) gapk®k® =1

(1) V(akp) =0 (k Killing)

(2) WopSqk? =0 and Popk?kP =1 .
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Prolonging the Killing-type equation V( k) = 0

> For any k, € T(T*M), set piap := Viskp = 0 € T(A2T*M).
» Differentiating gives Vajipe = Rpe?akq.
» So, V(,kp) = 0 is equivalent to

{0 = Vakp — ptab
0 = v:a/ﬁbc_"'-\)bcdakd '

Proposition

Solutions of V,kpy = 0 are in 1-1 correspondence with sections of
T*M @ A\?>T*M parallel w.r.t.

vprol kp . Vakp — thbe . 0
? Hbc . va,U/bc + 2Pa[bkc] Wbcdakd )
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Projective geometry: A one-slide primer

Definition
A projective structure on a manifold M is an equivalence class
p := [V] of t.-f. connections where V ~ V' iff V, V' have the

same unparameterized geodesics.

» Fundamental curvature: Projective Weyl curvature W
» dimM =n+1: £(1) := (A"FETM)Y (42 g(w) = £(1)®" .
» Define the cotractor bundle 7* := J1&(1):

0= T'M1)—-T"—=£&(1)—0 B(w) = B® &(w)

» 3 a canonical normal (co)tractor connection V7 on T*
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Projective tractor 2-forms

» Get induced bundles and canonical connections.
For A27*:

\{

0— A2T*M(2) — N2T* = T*M(2);

from V € p we get a splitting A27T* = T*M(2) @ A2T*M(2).

Induced connection:

vAT < kp > — ( Vakb — pibe >
2 Hbc . Vaibe + 2|:)a[bkc]

Comparing with the formula for VP! we've seen gives:

k 27 k 0]
()5 () ()
Hbc Hbc Wbcdakd

Remark: DN'T" - k, V(2kp) is a BGG operator.

\{

v
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The Thomas cone

\{

There is a canonical line bundle My — M (the total space is
the Thomas cone) such that TM, factors over the
(standard) tractor bundle 7 := (7*)*:

TMy — T — M.

\{

Equipped with a connection V# compatible with V7.

» For metric g, may identify the total space M associated to
[V&] with the metric cone.

If g Einstein, may identify V# with V7.
Then, since V7 h = 0, Hol(V7) C SO(h).

\4

\4
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Einstein-Sasaki geometry via projective holonomy

» If (M, g, k) is Sasaki-Einstein, there is J € End 7 compatible
with g and satisfying V7J = 0.

Theorem

If (M, g, k) is Sasaki-Einstein, the projective holonomy of the
projective structure [V8] carries a parallel tractor Hermitian
structure (h,J); equivalently, its holonomy satisfies

Hol(V7) € U(p, q),

where g has signature (2p — 1,2q).

» In fact, if M simply connected, there is a parallel complex
tractor volume form, so that Hol(V7) C SU(p, q)
(alternatively, work with restricted holonomy).
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» In general, Hol(V7) C SL(2m + 2, R)

» As in Riemannian geometry, we can investigate consequences
of Hol(V7) C H C SL(2m + 2, R).

» Such a holonomy reduction determines a stratification of M
into “curved orbits” M;, each equipped with an induced
geometry; this partition is modeled on the H-orbit
decomposition of the model projective sphere (S2™+1 p).

» |n particular, we an ask about converse of previous theorem:
Given (M, p) with Hol(V7) C U(p, q), what is the
stratification, and what are the induced geometries?

» We can also ask this for each of the intermediate groups:

U(p,q) = SO(2p,2q) N Sp2m+2,R) N GL(m+1,C)
h Q J

(Actually, in the last case,
SL(2m+2,R)NGL(m+1,C) =SL(m+1,C) x U(1).)
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Holonomy reductions of projective structures

» SO(2p,2q), tractor metric h (Cap-Gover-Hammerl)
» Open orbits My: Einstein (pseudo-)Riemannian structure
» Separating hypersurface Mp: Conformal structure (yields
compactification!)
If h definite (pg = 0) then M = M.
» Underlying object: Weighted function o, zero locus is M.
» Sp(2m + 2, R), tractor symplectic form Q (Armstrong)
» Underlying torsion-free contact projective structure on M
(generalized Fefferman construction).
» Underlying object: Normal solution k, of Killing-type equation.
» GL(m+ 1,C), tractor complex structure J (Armstrong)
» Locally fibers (with model fiber U(1)) over an integrable
c-projective structure.*
» Underlying object: Normal solution k? of adjoint BGG
operator.
(*Under additional condition: k? is a projective symmetry,
equivalently, W, k9 = 0—always satisfied in Sasaki-Einstein
case.)
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Projective structures w parallel tractor Hermitian structures
Theorem (Gover-Neusser-W)

Let (M, p) be a projective manifold of odd dim. 2m+1>5
equipped with a parallel tractor Hermitian structure (h,J),
equivalently, a holonomy reduction of V7 to U(p, q).

Then, M is stratified as M U Mo U M_ (if h is definite, M = M,
and My = (), and J determines an underlying projective symmetry
k. The components of the stratifications each inherit a geometry
canonically determined by (M, p; h, ).

» M, are open and equipped with Sasaki-Einstein structures
(g+, k) with Ricci curvature Ricy. = 2mgy.; g, has signature
(2p — 1,2q), and g_ has signature (2q — 1,2p). The metrics
g+ are compatible with p in that V&= € p|p, .

» My is a smooth separating hypersurface and is equipped with
an oriented (local) Fefferman conformal structure c of
signature (2p — 1,2q — 1). In particular, (Mp,+c) is a
projective infinity for (M, g+).
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The (local) fibration by k

> In the previous picture, we can form the local leaf space M of
integral curves of k; it inherits a c-projective structure (J,q).
Since k is tangent to My, we get a stratification
M= M, UMyUM._:
> M, are open and equipped with K3hler-Einstein metrics g..
> l\% inherits from a CR-structure; the Fefferman conformal
structure it induces is c.
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Constructing examples

» The first theorem gives a way to construct examples (with a
single curved orbit, and in particular with My = (:

» From Sasaki-Einstein structure (M, g, k), build the parallel
tractor data h,J on the underlying projective structure

(M, [VE]):
b (gsb (1)> LI (v_bk/;a /Ba)
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codimension 1 in C™ for which the CR obstruction O of the
induced CR structure (Ho, J) vanishes. Then, there is a projective
structure (M, p) equipped with a parallel tractor Hermitian
structure (h,J) for which (Mg, Ho, J) is the CR structure
underlying the hypersurface curved orbit (M, c).



Constructing examples ||

» On the other hand, many interesting phenomena (e.g.,
compactification) occur in the case My # ().

Theorem (Gover-Neusser-W)

Let My be a real-analytic, Levi-nondegenerate real submanifold of
codimension 1 in C™ for which the CR obstruction O of the
induced CR structure (Ho, J) vanishes. Then, there is a projective
structure (M, p) equipped with a parallel tractor Hermitian
structure (h,J) for which (Mg, Ho, J) is the CR structure
underlying the hypersurface curved orbit (M, c).

Proof (Sketch).

Build Fefferman conformal construction, carry out
Fefferman-Graham ambient metric construction, interpret in
projective terms, use parallel tractor extension result. O



Thank you.



