Special geometries via projective holonomy

Travis Willse Joint w A. Rod Gover (U Auckland) and R. Panai Joint w A. Rod Gover (U Auckland) and Katharina Neusser (Charles U)

University of Vienna

University of Tromsø Tromsø, 2018 May 29

K □ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ | 콜 | ④ Q (2)

A.R. Gover, R. Panai, W. Nearly Kähler Geometry and (2, 3, 5) distributions via projective holonomy, Indiana Univ. Math. J. 66(4) (2017), 1351–1416. arXiv:1403.1959

K □ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ | 콜 | ④ Q (2)

► A.R. Gover, K. Neusser, W. Projective geometry of Sasaki-Einstein structures and their compactification (submitted). arXiv:1803.09531

A Klein geometry is a pair (G, P) , where G is a Lie group, and P is a closed subgroup (might impose additional conditions, like G/P connected).

- A Klein geometry is a pair (G, P) , where G is a Lie group, and P is a closed subgroup (might impose additional conditions, like G/P connected).
- \blacktriangleright Idea: This encodes a homogeneous geometric structure on G/P for which G is the symmetry group.

- A Klein geometry is a pair (G, P) , where G is a Lie group, and P is a closed subgroup (might impose additional conditions, like G/P connected).
- \blacktriangleright Idea: This encodes a homogeneous geometric structure on G/P for which G is the symmetry group.

Example ((Oriented) Euclidean space)

The isometry group of (\mathbb{R}^n, \bar{g}) is $G := \mathsf{SO}(n, \mathbb{R}) \times \mathbb{R}^n$, which acts transitively with stabilizer $P:=\mathsf{SO}(n,\mathbb{R}),$ so $G/H\cong \mathbb{R}^n.$

- A Klein geometry is a pair (G, P) , where G is a Lie group, and P is a closed subgroup (might impose additional conditions, like G/P connected).
- \blacktriangleright Idea: This encodes a homogeneous geometric structure on G/P for which G is the symmetry group.

Example ((Oriented) Euclidean space)

The isometry group of (\mathbb{R}^n, \bar{g}) is $G := \mathsf{SO}(n, \mathbb{R}) \times \mathbb{R}^n$, which acts transitively with stabilizer $P:=\mathsf{SO}(n,\mathbb{R}),$ so $G/H\cong \mathbb{R}^n.$

Exter: We want to generalize (G, P) to 'curved verions' of that geometry (Cartan geometries) in the same way that Riemannian metrics (M, g) generalize (\mathbb{R}^n, \bar{g}) . In this context, we call (G, P) the flat model of the geometry it defines.

Projective (differential) geometry

Definition

A projective structure on a smooth manifold M is an equivalence class $\mathbf{p} = [\nabla]$ of torsion-free connections on M, where $\nabla \sim \hat{\nabla}$ iff $\nabla, \hat{\nabla}$ share the same geodesics.

Projective (differential) geometry

Definition

A **projective structure** on a smooth manifold M is an equivalence class $\mathbf{p} = [\nabla]$ of torsion-free connections on M, where $\nabla \sim \hat{\nabla}$ iff ∇, ∇ share the same geodesics.

 $\blacktriangleright~\nabla\sim\hat{\nabla}$ iff there is an $\Upsilon\in\Gamma(\mathit{T}^*\mathit{M})$ such that

 $\hat\nabla_a\eta_b=\nabla_a\eta_b+\Upsilon_a\eta_b+\Upsilon_b\eta_a\quad\forall\eta\in\Gamma(\mathcal{T}^*M).$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - 10 Q Q Q

Projective (differential) geometry

Definition

A projective structure on a smooth manifold \overline{M} is an equivalence class $\mathbf{p} = [\nabla]$ of torsion-free connections on M, where $\nabla \sim \hat{\nabla}$ iff ∇, ∇ share the same geodesics.

 $\blacktriangleright~\nabla\sim\hat{\nabla}$ iff there is an $\Upsilon\in\Gamma(\mathit{T}^*\mathit{M})$ such that

$$
\hat{\nabla}_a \eta_b = \nabla_a \eta_b + \Upsilon_a \eta_b + \Upsilon_b \eta_a \quad \forall \eta \in \Gamma(\mathcal{T}^*M).
$$

Example (Projective sphere)

Let $\pi: \mathbb{R}^{n+1}-\{0\} \to \mathbb{S}^n$ denote the ray projectivization. There is a connection $\overline{\nabla}$ for which the geodesics are precisely (the arcs of) the great circles, that is, the circles $\pi(\Pi - \{0\})$, $\Pi \in \mathsf{G}(2,\mathbb{R}^{n+1})$.

Flat model of (real, oriented) projective geometry

 \triangleright Take $G := SL(n+1, \mathbb{R})$, $P = P_{SL} < G$ the stabilizer of a ray in \mathbb{R}^{n+1} .

Flat model of (real, oriented) projective geometry

 \triangleright Take $G := SL(n+1, \mathbb{R})$, $P = P_{SL} < G$ the stabilizer of a ray in \mathbb{R}^{n+1} .

KO → K@ → K 통 → K 통 → 영영 → X → X

 \blacktriangleright $G/P := SL(n+1, \mathbb{R})/P = \{\text{space of rays}\} = \mathbb{S}^n$

Flat model of (real, oriented) projective geometry

- \triangleright Take $G := SL(n+1, \mathbb{R})$, $P = P_{SI} < G$ the stabilizer of a ray in \mathbb{R}^{n+1} .
- \blacktriangleright $G/P := SL(n+1, \mathbb{R})/P = \{\text{space of rays}\} = \mathbb{S}^n$
- $\blacktriangleright\,$ G maps 2d subspaces $\sqcap\subset\mathbb{R}^{n+1}$ to 2-planes, so it preserves lines (great circles) in \mathbb{S}^n , i.e., the flat projective structure $\bar{\mathbf{p}} := [\bar{\nabla}].$

K □ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ | 콜 | ④ Q (2)

For given (G, P) , we investigate consequences of fixing a conjugacy class of subgroups $H < G$, with a view toward understanding whatever the analogue is in the curved (Cartan geometry) setting.

For given (G, P) , we investigate consequences of fixing a conjugacy class of subgroups $H < G$, with a view toward understanding whatever the analogue is in the curved (Cartan geometry) setting.

 \triangleright The left action of H on $X := G/P$ determines a decomposition $X = \coprod_a X_a$ into H-orbits.

- For given (G, P) , we investigate consequences of fixing a conjugacy class of subgroups $H < G$, with a view toward understanding whatever the analogue is in the curved (Cartan geometry) setting.
- \triangleright The left action of H on $X := G/P$ determines a decomposition $X = \coprod_a X_a$ into H-orbits.
- \blacktriangleright The H-action realizes each orbit X_a is a homogeneous space (H, P_a) .

- For given (G, P) , we investigate consequences of fixing a conjugacy class of subgroups $H < G$, with a view toward understanding whatever the analogue is in the curved (Cartan geometry) setting.
- \triangleright The left action of H on $X := G/P$ determines a decomposition $X = \coprod_a X_a$ into H-orbits.
- \blacktriangleright The H-action realizes each orbit X_a is a homogeneous space (H, P_a) .
- \triangleright Morally $P_a = H \cap P$, and more precisely, the H-orbits parameterize the intersections of conjugates of H with P up to conjugacy.

$$
G = SL(n+1,\mathbb{R}), \quad P = P_{SL}, \quad H = SO(p,q).
$$

K □ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ | 콜 | ④ Q (2)

 \triangleright CASE I: If form is definite ($p = 0$ or $q = 0$), then $H \cong SO(n,\mathbb{R})$ acts transitively on \mathbb{S}^n with stabilizer $P_a = P_{SI} \cap H = SO(n-1, \mathbb{R}).$

$$
G = SL(n+1, \mathbb{R}), \quad P = P_{SL}, \quad H = SO(p, q).
$$

 \triangleright CASE I: If form is definite ($p = 0$ or $q = 0$), then $H \cong SO(n,\mathbb{R})$ acts transitively on \mathbb{S}^n with stabilizer $P_a = P_{SI} \cap H = SO(n-1, \mathbb{R}).$ Klein geometry:

$$
(\mathsf{SO}(n,\mathbb{R}),\mathsf{SO}(n-1,\mathbb{R}))
$$

Bilinear form induces round metric on $\mathsf{SO}(n,\mathbb{R})/\mathsf{SO}(n-1,\mathbb{R})\cong \mathbb{S}^n$, and that metric is preserved exactly by $H = SO(n, \mathbb{R})$.

$$
G = SL(n+1, \mathbb{R}), \quad P = P_{SL}, \quad H = SO(p, q).
$$

 \triangleright CASE I: If form is definite ($p = 0$ or $q = 0$), then $H \cong SO(n,\mathbb{R})$ acts transitively on \mathbb{S}^n with stabilizer $P_a = P_{SI} \cap H = SO(n-1, \mathbb{R}).$ Klein geometry:

$$
(\mathsf{SO}(n,\mathbb{R}),\mathsf{SO}(n-1,\mathbb{R}))
$$

Bilinear form induces round metric on $\mathsf{SO}(n,\mathbb{R})/\mathsf{SO}(n-1,\mathbb{R})\cong \mathbb{S}^n$, and that metric is preserved exactly by $H = SO(n, \mathbb{R})$.

$$
G = SL(n+1,\mathbb{R}), \quad P = P_{SL}, \quad H = SO(p,q).
$$

 \triangleright CASE I: If form is definite ($p = 0$ or $q = 0$), then $H \cong SO(n,\mathbb{R})$ acts transitively on \mathbb{S}^n with stabilizer $P_a = P_{SI} \cap H = SO(n-1, \mathbb{R}).$ Klein geometry:

$$
(\mathsf{SO}(n,\mathbb{R}),\mathsf{SO}(n-1,\mathbb{R}))
$$

Bilinear form induces round metric on $\mathsf{SO}(n,\mathbb{R})/\mathsf{SO}(n-1,\mathbb{R})\cong \mathbb{S}^n$, and that metric is preserved exactly by $H = SO(n, \mathbb{R})$.

Remark

The curved version of $(SO(n, \mathbb{R}), SO(n-1, \mathbb{R}))$ is also Riemannian geometry, but with the round metric as its model.

Example (cont.)

► CASE II: If form is indefinite $(p, q > 0)$, then $H \cong SO(p, q)$ has three orbits on \mathbb{S}^n , determined by the causality type of the stabilized ray:

Example (cont.)

- \triangleright CASE II: If form is indefinite (p, $q > 0$), then $H \cong SO(p, q)$ has three orbits on \mathbb{S}^n , determined by the causality type of the stabilized ray:
	- If the ray stabilized by $P_{\rm SI}$ is positive definite, then P_+ is the stabilizer of a positive definite ray in \mathbb{R}^n : The Klein geometry is

 $(SO(p, q), SO(p-1, q)), X_+ = SO(p, q)/SO(p-1, q) \cong \mathbb{S}^{p-1,q}$

KORKA SERKER ORA

Corresponding geometry: Pseudo-Riemannian, signature $(p-1, q)$.)

Example (cont.)

- ► CASE II: If form is indefinite $(p, q > 0)$, then $H \cong SO(p, q)$ has three orbits on \mathbb{S}^n , determined by the causality type of the stabilized ray:
	- If the ray stabilized by $P_{\rm SI}$ is positive definite, then P_+ is the stabilizer of a positive definite ray in \mathbb{R}^n : The Klein geometry is

 $(SO(p, q), SO(p-1, q)), X_+ = SO(p, q)/SO(p-1, q) \cong \mathbb{S}^{p-1,q}$

Corresponding geometry: Pseudo-Riemannian, signature $(p-1, q)$.)

 \blacktriangleright ... negative definite...

 $(SO(p, q), SO(p, q-1)), X_+ = SO(p, q)/SO(p, q-1) \cong \mathbb{S}^{p, q-1}$ $...(p, q-1).$

Example (cont. again)

 \triangleright CASE II (cont): If form is indefinite $(p, q > 0)$, then $H \cong SO(p,q)$ has three orbits on \mathbb{S}^n , determined by the causality type of the stabilized ray:

K □ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ | 콜 | ④ Q (2)

Example (cont. again)

- \triangleright CASE II (cont): If form is indefinite $(p, q > 0)$, then $H \cong SO(p,q)$ has three orbits on \mathbb{S}^n , determined by the causality type of the stabilized ray:
	- ► $P_0 = P_{SL} \cap H = P_{SO}$, the stabilizer of a null ray in \mathbb{R}^n : The Klein geometry is

$$
(\mathsf{SO}(p,q),P_{\mathsf{SO}}),\quad X_0\cong \mathbb{S}^{p-1}\times \mathbb{S}^{q-1}
$$

Bilinear form induces round conformal structure X_0 , and that structure is preserved exactly by $SO(p, q)$.

Example (cont. again)

- \triangleright CASE II (cont): If form is indefinite $(p, q > 0)$, then $H \cong SO(p,q)$ has three orbits on \mathbb{S}^n , determined by the causality type of the stabilized ray:
	- ► $P_0 = P_{SL} \cap H = P_{SO}$, the stabilizer of a null ray in \mathbb{R}^n : The Klein geometry is

$$
(\mathsf{SO}(p,q),P_{\mathsf{SO}}),\quad X_0\cong \mathbb{S}^{p-1}\times \mathbb{S}^{q-1}
$$

Bilinear form induces round conformal structure X_0 , and that structure is preserved exactly by $SO(p, q)$.

► Corresponding geometry: Oriented conformal geometry of signature $(p-1, q-1)$.)

 \blacktriangleright Pick suitable properties of (G, P) to generalize.

- \blacktriangleright Pick suitable properties of (G, P) to generalize.
- ► Can encode in an P-principal bundle $G \rightarrow G/P$.

KO → K@ → K 통 → K 통 → 영영 → X → X

- \blacktriangleright Pick suitable properties of (G, P) to generalize.
- ► Can encode in an P-principal bundle $G \rightarrow G/P$.
- \triangleright Total space G is equipped with tautological Maurer-Cartan form $\omega_{MC} \in \Gamma(T^*G \otimes \mathfrak{g})$:

$$
\omega_{MC}(X_g):= \mathcal{T}_g L_{g^{-1}} \cdot X_g \in \mathcal{T}_e G \cong \mathfrak{g}.
$$

K □ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ | 콜 | ④ Q (2)

- \blacktriangleright Pick suitable properties of (G, P) to generalize.
- ► Can encode in an P-principal bundle $G \rightarrow G/P$.
- \triangleright Total space G is equipped with tautological Maurer-Cartan form $\omega_{MC} \in \Gamma(T^*G \otimes \mathfrak{g})$:

$$
\omega_{\textit{MC}}(X_g):= \textit{T}_g \textit{L}_{g^{-1}} \cdot X_g \in \textit{T}_e \textit{G} \cong \mathfrak{g}.
$$

- \blacktriangleright ω_{MC} satisfies nice properties:
	- \triangleright P-equivariance
	- \blacktriangleright $(\omega_{MC})_g : T_g G \stackrel{\cong}{\rightarrow} g$
	- \blacktriangleright Maps invariant vector field generated by $X \in \mathfrak{h}$ to X.

Cartan geometry

A Cartan geometry of type (G, P) is a pair $(G \rightarrow M, \omega)$ where G is a P-principal bundle and ω is a Cartan connection thereon, namely, a form $\omega \in \mathsf{\Gamma}(\mathcal{T}^{\ast} \mathsf{G} \otimes \mathfrak{g})$ satisfying the conditions on the previous page (replacing G with G).

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - 10 Q Q Q

Cartan geometry (cont.)

 \triangleright Arise naturally as output of Cartan's Method of Equivalence, which (sometimes, and sometimes canonically) assigns geometric structures of a given type to Cartan geometries of a corresponding type (G, P) .

Cartan geometry (cont.)

- \triangleright Arise naturally as output of Cartan's Method of Equivalence, which (sometimes, and sometimes canonically) assigns geometric structures of a given type to Cartan geometries of a corresponding type (G, P) .
- \blacktriangleright Main advantages:
	- \triangleright Treats a wide variety of geometric structures in a common framework.
	- \triangleright When a canonical construction (structure) $\rightsquigarrow \omega$ exists, ω encodes higher-order data of the structure and can be used to construct invariants, most importantly, curvature $\Omega:=d\omega+\frac{1}{2}[\omega,\omega]$ (vanishes for $(\mathsf{G},\omega_{\mathsf{MC}})).$

Holonomy of a Cartan geometry

 \triangleright The appropriate curved analogue of reduction to a group $H < G$ in a Klein geometry (G, P) is reduction of the holonomy group of the Cartan connection.

Holonomy of a Cartan geometry

- \triangleright The appropriate curved analogue of reduction to a group $H < G$ in a Klein geometry (G, P) is reduction of the holonomy group of the Cartan connection.
- \triangleright Though ω is not a principal connection, it extends uniquely equivariantly to a principal connection $\widehat{\omega}$ on $\widehat{G} := \mathcal{G} \times_{\mathcal{P}} G$. Then, declare Hol $(\omega) := Hol(\tilde{\omega})$, so Hol (ω) is a subgroup (more precisely, a conjugacy class of subgroups) in G.

Holonomy of a Cartan geometry

- \triangleright The appropriate curved analogue of reduction to a group $H < G$ in a Klein geometry (G, P) is reduction of the holonomy group of the Cartan connection.
- \triangleright Though ω is not a principal connection, it extends uniquely equivariantly to a principal connection $\widehat{\omega}$ on $\widehat{G} := \mathcal{G} \times_{\mathcal{P}} G$. Then, declare Hol $(\omega) := Hol(\tilde{\omega})$, so Hol (ω) is a subgroup (more precisely, a conjugacy class of subgroups) in G.
- \blacktriangleright Q: For (G, ω) of type (G, P) , what are the geometric consequences of fixing a subgroup (conjugacy class thereof) $Hol(\omega) < H < G$?

Alternative formulation: tractor geometry

Fix (G, ω) . For any representation W of G, consider the associated vector bundle $W := G \times_{P} \mathbb{W}$; ω induces a vector bundle connection $\nabla^{\mathcal{W}}$, and $\text{Hol}(\nabla^{\mathcal{W}}) \cong \text{Hol}(\omega)$.

KO → K@ → K 통 → K 통 → 영영 → X → X

Alternative formulation: tractor geometry

Fix (G, ω) . For any representation W of G, consider the associated vector bundle $W := G \times_{P} \mathbb{W}$; ω induces a vector bundle connection $\nabla^{\mathcal{W}}$, and Hol $(\nabla^{\mathcal{W}}) \cong Hol(\omega)$.

Remark

In the case of projective geometry, the tractor bundle determined by $\mathbb{V}^*=(\mathbb{R}^{n+1})^*$ is canonically isomorphic to $J^1\mathcal{E}(1)$, where $\mathcal{E}(1)$ is the bundle of densities of projective weight 1.

 \triangleright (Not maximally general but covers many important cases:) Suppose for some representation W that $s \in \Gamma(\mathcal{W})$ is a $\nabla^{\mathcal{W}}$ -parallel, so that Hol $(\nabla^{\mathcal{W}}) \leq H := \text{Stab}_G(s)$.

- \triangleright (Not maximally general but covers many important cases:) Suppose for some representation W that $s \in \Gamma(\mathcal{W})$ is a $\nabla^{\mathcal{W}}$ -parallel, so that Hol $(\nabla^{\mathcal{W}}) \leq H := \mathsf{Stab}_G(s)$.
- ► By definition, s corresponds to a P-equivariant map $\mathcal{G} \to \mathbb{W}$ or just as well a G-equivariant map $s : \widehat{\mathcal{G}} \to \mathbb{W}$.

- \triangleright (Not maximally general but covers many important cases:) Suppose for some representation W that $s \in \Gamma(\mathcal{W})$ is a $\nabla^{\mathcal{W}}$ -parallel, so that Hol $(\nabla^{\mathcal{W}}) \leq H := \mathsf{Stab}_G(s)$.
- ► By definition, s corresponds to a P-equivariant map $\mathcal{G} \to \mathbb{W}$ or just as well a G-equivariant map $s : \widehat{G} \to \mathbb{W}$.
- Finen, the G-orbit $\mathcal{O} := G \cdot s(u) \subset \mathbb{W}$ is independent of u; we call this orbit the G -type of s .

- \triangleright (Not maximally general but covers many important cases:) Suppose for some representation W that $s \in \Gamma(\mathcal{W})$ is a $\nabla^{\mathcal{W}}$ -parallel, so that Hol $(\nabla^{\mathcal{W}}) \leq H := \text{Stab}_G(s)$.
- ► By definition, s corresponds to a P-equivariant map $\mathcal{G} \to \mathbb{W}$ or just as well a *G*-equivariant map $s : \widehat{G} \to \mathbb{W}$.
- Finen, the G-orbit $\mathcal{O} := G \cdot s(u) \subset \mathbb{W}$ is independent of u; we call this orbit the G -type of s .
- Since $\nabla^{\mathcal{W}}$ is a tractor connection, for any $x \in M$, the P-orbit $P \cdot s(u) \subset \mathcal{O}$ is independent of the choice of $u \in \mathcal{G}_x$; this is the P-type.

C.o.d.: Main Theorem

In Unwinding definitions shows that the P-type of a point on the flat model is determined exactly by its H orbit, so we call the set of points with a given P-type a curved orbit. This gives the curved orbit decomposition

$$
M:=\coprod_{a\in P\setminus\mathcal{O}}M_a
$$

that generalizes the *H*-orbit decomposition of G/P .

C.o.d.: Main Theorem

In Unwinding definitions shows that the P-type of a point on the flat model is determined exactly by its H orbit, so we call the set of points with a given P-type a curved orbit. This gives the curved orbit decomposition

$$
M:=\coprod_{a\in P\setminus\mathcal{O}}M_a
$$

that generalizes the *H*-orbit decomposition of G/P .

Theorem (Čap, Gover, Hammerl)

Given a Cartan geometry (\mathcal{G}, ω) of type (G, P) and a conjugacy class of groups Hol(ω) $\leq H \leq G$, we get the above decomposition, and each M_a is respectively equipped with a Cartan geometry of type (H, P_a) , given by appropriate pullbacks via inclusions $\mathcal{G}_a \hookrightarrow \mathcal{G}|_{M_a}.$

Example: Orthogonal reduction redux

Suppose $h\in \Gamma(S^2\mathcal V^*)$ is nondegenerate of signature $(p,q).$

 $G := SL(n+1, \mathbb{R}), \quad P := P_{SL}, \quad H := Stab_G(s) \cong SO(p, q)$

We know from understanding the reduction of the Klein geometry (G, P) to H that there are three curved orbits: M_+ inherit (pseudo-)Riemannian structures of signatures $(p-1, q)$, $(p, q-1)$, and M_0 inherits a conformal structure of signature $(p-1, q-1)$.

Example: Orthogonal reduction redux

Suppose $h\in \Gamma(S^2\mathcal V^*)$ is nondegenerate of signature $(p,q).$

 $G := SL(n+1, \mathbb{R}), \quad P := P_{SL}, \quad H := Stab_G(s) \cong SO(p, q)$

We know from understanding the reduction of the Klein geometry (G, P) to H that there are three curved orbits: M_+ inherit (pseudo-)Riemannian structures of signatures $(p-1, q)$, $(p, q-1)$, and M_0 inherits a conformal structure of signature $(p-1, q-1)$.

 \blacktriangleright How to realize underlying structures explicitly?

Example ((Pseudo-)Riemannian structures)

An oriented projective structure comes equipped with a preferred section $X \in \Gamma(\mathcal{V} \otimes \mathcal{E}(1))$ —identifiable with the canonical projection $J^1\mathcal{E}(1) \cong \mathcal{V}^* \stackrel{\cdot}{\rightarrow} \mathcal{E}(1)$, and we can construct a canonical weighted object $\tau := h(X, X) \in \Gamma(\mathcal{E}(2))$. By construction, $M_+ = \{x : h(X, X)_x > 0\}$, and we can pick a connection $\nabla\in\mathsf{p}|_{M_+}$ s.t. $\nabla\tau=0.$ Then, the projective Schouten tensor P^∇ is nondegenerate because h is, and $\nabla^{\mathcal{V}} h = 0$ implies that $\nabla \mathsf{P}^\nabla = \frac{1}{n} \nabla \, \mathsf{Ric} = 0$, so ∇ is the Levi-Civita connection of the Einstein metric $g := P^{\nabla}$.

-
◆ ロ ▶ → ⋳ <mark>▶ → ミ ▶ → ミ ▶ │ ミ</mark> │ ◆) ۹ (^

Two comments

Remark (Compactification)

The fact that the metric g on M_+ and conformal structure c on M_0 both arise from h imposes strong compatibility conditions between the two structures. This leads to a notion of compactification of a (pseudo-)Riemannian metric with appropriate asymptotics by conformal geometry, all mediated via projective geometry.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할

 $2Q$

Two comments

Remark (Compactification)

The fact that the metric g on M_+ and conformal structure c on M_0 both arise from h imposes strong compatibility conditions between the two structures. This leads to a notion of compactification of a (pseudo-)Riemannian metric with appropriate asymptotics by conformal geometry, all mediated via projective geometry.

The map $\Pi^{S^2\mathcal{V}^*}:S^2\mathcal{V}^*\rightsquigarrow \mathcal{E}(2),\, s\mapsto s(X,X),$ is the BGG projection operator associated to W. For any W we get such a projection, and this map relates the holonomy reduction the geometry to an object that can usually be interpreted as data on the underlying manifold. If $\nabla^{\mathcal{W}}s = 0$, then $\Pi(s)$ is a solution to an invariant BGG operator.

Example: \overline{G}_2 (case studied w Gover, Panai)

 $G := SL(7, \mathbb{R}), \quad P := P_{\text{SI}} , \quad H := G_2 \quad (\dim M = 6)$

- \blacktriangleright $G_2 \hookrightarrow SO(3, 4)$ so this reduction refines the orthogonal one. Now, G₂ acts transitively on each of $X_+, X_0, X_-,$ but we expect that the stronger reduction should determine more geometric structure on each orbit.
- ► G $_2$ reduction can be encoded by a parallel $\Phi \in \Gamma (\wedge^3 \mathcal{V}^\ast)$ of the appropriate G-type; determines $h_\Phi \in \Gamma(S^2 \mathcal V^*)$.
- ► Object underlying Φ. is section of $\Lambda^2(\mathcal{T}^*M(3))$. On M_+ , trivializing with a power of $\tau > 0$ and raising an index gives a complex structure J. Then $\nabla^{\wedge^3 \mathcal{V}^*}\Phi=0$ implies that (g,J) defines a nearly Kähler structure on M_{+} .

► Similarly, on M₋, get a nearly para-Kähler structure.

Example: G_2 (cont.)

 \triangleright On M_0 , the conformal structure has holonomy contained in G_2 ; Nurowski showed these are $(2, 3, 5)$ conformal structures: These are induced canonically by distributions D satisfying $[D, [D, D]] = TM_0.$

Example: G_2 (cont.)

 \triangleright On M_0 , the conformal structure has holonomy contained in $G₂$; Nurowski showed these are $(2, 3, 5)$ conformal structures: These are induced canonically by distributions D satisfying $[D, [D, D]] = TM_0$.

 \blacktriangleright In this case, object underlying is a section $J_0 \in \Gamma(\text{End}(TM_0) \otimes \mathcal{E}[1])$. Then, we recover $D = \text{im}(J_0) \otimes \mathcal{E}[-1]$, and $[D, D] = \text{ker } J_0$.

 $G := SL(2m+2, \mathbb{R}), \quad P := P_{SL}, \quad H := U(p', q'), p' + q' = m + 1$

KO → K@ → K 통 → K 통 → 영영 → X → X

 $G := SL(2m+2, \mathbb{R}), \quad P := P_{SL}, \quad H := U(p', q'), p' + q' = m + 1$

 \blacktriangleright Two-out-of-three Rule: $\mathsf{U}(p',q')$ is the intersection of any two of (mutually compatible)

 $SO(2p', 2q'), \quad GL(2m+2, \mathbb{C}), \quad Sp(2m+2, \mathbb{R});$

can study these reductions separately and distill which features arise from which intermediate holonomy reductions; these three studied by Armstrong but only described briefly.

 $G := SL(2m+2, \mathbb{R}), \quad P := P_{SL}, \quad H := U(p', q'), p' + q' = m + 1$

 \blacktriangleright Two-out-of-three Rule: $\mathsf{U}(p',q')$ is the intersection of any two of (mutually compatible)

 $SO(2p', 2q'), \quad GL(2m+2, \mathbb{C}), \quad Sp(2m+2, \mathbb{R});$

can study these reductions separately and distill which features arise from which intermediate holonomy reductions; these three studied by Armstrong but only described briefly.

 \blacktriangleright Sp(2m + 2, R): Underlying object: normal solution of Killing-type equation; induced geometry: (torsion-free) contact projective geometry

 $G := SL(2m+2, \mathbb{R}), \quad P := P_{SL}, \quad H := U(p', q'), p' + q' = m + 1$

 \blacktriangleright Two-out-of-three Rule: $\mathsf{U}(p',q')$ is the intersection of any two of (mutually compatible)

 $SO(2p', 2q'), \quad GL(2m+2, \mathbb{C}), \quad Sp(2m+2, \mathbb{R});$

can study these reductions separately and distill which features arise from which intermediate holonomy reductions; these three studied by Armstrong but only described briefly.

- \blacktriangleright Sp(2m + 2, R): Underlying object: normal solution of Killing-type equation; induced geometry: (torsion-free) contact projective geometry
- \blacktriangleright GL(2m + 2, C): Underlying object: normal solution k of "adjoint BGG operator"; geometry (provided k is a projective symmetry, equiv., $\mathcal{W}_{da}{}^{b}{}_{c} \mathit{k}^{d} = 0$): natural bundle with model fiber $U(1)$ over integrable c-projective structure.

In fact, a reduction to $U(p, q)$ (locally) implies a reduction to $\mathsf{SU}(p,q)$, which acts transitively on each of M_+, M_0, M_-, k is automatically a projective symmetry.

In fact, a reduction to $U(p, q)$ (locally) implies a reduction to $SU(p, q)$, which acts transitively on each of M_+, M_0, M_-, k is automatically a projective symmetry.

 \triangleright On M_+ , Sasaki-Einstein structure (dim 2m + 1); locally fibers over Kähler-Einstein structure $(\bar{M}_+, \bar{g}, \bar{J})$ (dim 2m) with model fibers U(1); c-projective structure is $(M_+,\bar{J},[\nabla^{\bar{\mathcal{B}}}])$

In fact, a reduction to $U(p, q)$ (locally) implies a reduction to $\mathsf{SU}(p,q)$, which acts transitively on each of M_+, M_0, M_-, k is automatically a projective symmetry.

- \triangleright On M_+ , Sasaki-Einstein structure (dim 2m + 1); locally fibers over Kähler-Einstein structure $(\bar{M}_+, \bar{g}, \bar{J})$ (dim 2m) with model fibers U(1); c-projective structure is $(M_+,\bar{J},[\nabla^{\bar{\mathcal{B}}}])$
- \triangleright On M_0 , Fefferman conformal structure of signature $(2p' - 1, 2q' - 1)$, i.e., induced on circle bundle over manifold \bar{M}_0 (dim 2m $-$ 1) equipped with by hypersurface-type (in fact, integrable) CR structure with (nondegenerate) Levi-form $(p' - 1, q' - 1).$

In fact, a reduction to $U(p, q)$ (locally) implies a reduction to $\mathsf{SU}(p,q)$, which acts transitively on each of M_+, M_0, M_-, k is automatically a projective symmetry.

- \triangleright On M_+ , Sasaki-Einstein structure (dim 2m + 1); locally fibers over Kähler-Einstein structure $(\bar{M}_+, \bar{g}, \bar{J})$ (dim 2m) with model fibers U(1); c-projective structure is $(M_+,\bar{J},[\nabla^{\bar{\mathcal{B}}}])$
- \triangleright On M_0 , Fefferman conformal structure of signature $(2p' - 1, 2q' - 1)$, i.e., induced on circle bundle over manifold \bar{M}_0 (dim 2m $-$ 1) equipped with by hypersurface-type (in fact, integrable) CR structure with (nondegenerate) Levi-form $(p' - 1, q' - 1).$
- \triangleright Downstairs (on barred objects) we get a compactification of Kähler-Einstein structures with appropriate asymptotics by CR structures—this is the classical one (can regard as mediated by c-projective geometry), which is hence compatible with the projective compactification.

Thank you.