Special geometries via projective holonomy

Travis Willse Joint <u>w</u> A. Rod Gover (U Auckland) and R. Panai Joint <u>w</u> A. Rod Gover (U Auckland) and Katharina Neusser (Charles U)

University of Vienna

University of Tromsø Tromsø, 2018 May 29

A.R. Gover, R. Panai, <u>W</u>, Nearly Kähler Geometry and (2,3,5) distributions via projective holonomy, *Indiana Univ. Math. J.* 66(4) (2017), 1351–1416. arXiv:1403.1959

► A.R. Gover, K. Neusser, <u>W</u>, Projective geometry of Sasaki-Einstein structures and their compactification (submitted). arXiv:1803.09531

► A Klein geometry is a pair (G, P), where G is a Lie group, and P is a closed subgroup (might impose additional conditions, like G/P connected).

- ► A Klein geometry is a pair (G, P), where G is a Lie group, and P is a closed subgroup (might impose additional conditions, like G/P connected).
- ► Idea: This encodes a homogeneous geometric structure on G/P for which G is the symmetry group.

- ► A Klein geometry is a pair (G, P), where G is a Lie group, and P is a closed subgroup (might impose additional conditions, like G/P connected).
- ► Idea: This encodes a homogeneous geometric structure on G/P for which G is the symmetry group.

Example ((Oriented) Euclidean space)

The isometry group of $(\mathbb{R}^n, \overline{g})$ is $G := SO(n, \mathbb{R}) \times \mathbb{R}^n$, which acts transitively with stabilizer $P := SO(n, \mathbb{R})$, so $G/H \cong \mathbb{R}^n$.

- ► A Klein geometry is a pair (G, P), where G is a Lie group, and P is a closed subgroup (might impose additional conditions, like G/P connected).
- ► Idea: This encodes a homogeneous geometric structure on G/P for which G is the symmetry group.

Example ((Oriented) Euclidean space)

The isometry group of $(\mathbb{R}^n, \overline{g})$ is $G := SO(n, \mathbb{R}) \times \mathbb{R}^n$, which acts transitively with stabilizer $P := SO(n, \mathbb{R})$, so $G/H \cong \mathbb{R}^n$.

Later: We want to generalize (G, P) to 'curved verions' of that geometry (*Cartan geometries*) in the same way that Riemannian metrics (M, g) generalize (ℝⁿ, ḡ). In this context, we call (G, P) the **flat model** of the geometry it defines.

Projective (differential) geometry

Definition

A **projective structure** on a smooth manifold M is an equivalence class $\mathbf{p} = [\nabla]$ of torsion-free connections on M, where $\nabla \sim \hat{\nabla}$ iff $\nabla, \hat{\nabla}$ share the same geodesics.

Projective (differential) geometry

Definition

A projective structure on a smooth manifold M is an equivalence class $\mathbf{p} = [\nabla]$ of torsion-free connections on M, where $\nabla \sim \hat{\nabla}$ iff $\nabla, \hat{\nabla}$ share the same geodesics.

• $\nabla \sim \hat{\nabla}$ iff there is an $\Upsilon \in \Gamma(T^*M)$ such that

$$\hat{\nabla}_{a}\eta_{b} = \nabla_{a}\eta_{b} + \Upsilon_{a}\eta_{b} + \Upsilon_{b}\eta_{a} \quad \forall \eta \in \Gamma(T^{*}M).$$

Projective (differential) geometry

Definition

A projective structure on a smooth manifold M is an equivalence class $\mathbf{p} = [\nabla]$ of torsion-free connections on M, where $\nabla \sim \hat{\nabla}$ iff $\nabla, \hat{\nabla}$ share the same geodesics.

• $\nabla \sim \hat{\nabla}$ iff there is an $\Upsilon \in \Gamma(T^*M)$ such that

$$\hat{\nabla}_{a}\eta_{b} = \nabla_{a}\eta_{b} + \Upsilon_{a}\eta_{b} + \Upsilon_{b}\eta_{a} \quad \forall \eta \in \Gamma(T^{*}M).$$

Example (Projective sphere)

Let $\pi : \mathbb{R}^{n+1} - \{0\} \to \mathbb{S}^n$ denote the ray projectivization. There is a connection $\overline{\nabla}$ for which the geodesics are precisely (the arcs of) the great circles, that is, the circles $\pi(\Pi - \{0\}), \Pi \in G(2, \mathbb{R}^{n+1})$. Flat model of (real, oriented) projective geometry

► Take G := SL(n+1, ℝ), P = P_{SL} < G the stabilizer of a ray in ℝⁿ⁺¹.

Flat model of (real, oriented) projective geometry

- ► Take G := SL(n+1, ℝ), P = P_{SL} < G the stabilizer of a ray in ℝⁿ⁺¹.
- ► $G/P := SL(n+1, \mathbb{R})/P = {\text{space of rays}} = \mathbb{S}^n$

Flat model of (real, oriented) projective geometry

- ► Take G := SL(n+1, ℝ), P = P_{SL} < G the stabilizer of a ray in ℝⁿ⁺¹.
- ▶ $G/P := SL(n+1, \mathbb{R})/P = {\text{space of rays}} = \mathbb{S}^n$

For given (G, P), we investigate consequences of fixing a conjugacy class of subgroups H < G, with a view toward understanding whatever the analogue is in the curved (Cartan geometry) setting.</p>

- ► For given (G, P), we investigate consequences of fixing a conjugacy class of subgroups H < G, with a view toward understanding whatever the analogue is in the curved (Cartan geometry) setting.</p>
- The left action of H on X := G/P determines a decomposition X = ∐_a X_a into H-orbits.

- For given (G, P), we investigate consequences of fixing a conjugacy class of subgroups H < G, with a view toward understanding whatever the analogue is in the curved (Cartan geometry) setting.
- The left action of H on X := G/P determines a decomposition X = ∐_a X_a into H-orbits.
- ► The *H*-action realizes each orbit X_a is a homogeneous space (*H*, *P_a*).

- For given (G, P), we investigate consequences of fixing a conjugacy class of subgroups H < G, with a view toward understanding whatever the analogue is in the curved (Cartan geometry) setting.
- The left action of H on X := G/P determines a decomposition X = ∐_a X_a into H-orbits.
- ► The *H*-action realizes each orbit X_a is a homogeneous space (*H*, *P_a*).
- ► Morally P_a = H ∩ P, and more precisely, the H-orbits parameterize the intersections of conjugates of H with P up to conjugacy.

$$G = SL(n+1, \mathbb{R}), \quad P = P_{SL}, \quad H = SO(p, q).$$

 CASE I: If form is definite (p = 0 or q = 0), then H ≈ SO(n, ℝ) acts transitively on Sⁿ with stabilizer P_a = P_{SL} ∩ H = SO(n − 1, ℝ).

$$G = SL(n+1,\mathbb{R}), \quad P = P_{SL}, \quad H = SO(p,q).$$

 CASE I: If form is definite (p = 0 or q = 0), then H ≅ SO(n, ℝ) acts transitively on Sⁿ with stabilizer P_a = P_{SL} ∩ H = SO(n − 1, ℝ).
 Klein geometry:

$$(SO(n,\mathbb{R}),SO(n-1,\mathbb{R}))$$

Bilinear form induces round metric on $SO(n, \mathbb{R})/SO(n-1, \mathbb{R}) \cong \mathbb{S}^n$, and that metric is preserved exactly by $H = SO(n, \mathbb{R})$.

$$G = SL(n+1,\mathbb{R}), \quad P = P_{SL}, \quad H = SO(p,q).$$

 CASE I: If form is definite (p = 0 or q = 0), then H ≅ SO(n, ℝ) acts transitively on Sⁿ with stabilizer P_a = P_{SL} ∩ H = SO(n − 1, ℝ).
 Klein geometry:

$$(SO(n,\mathbb{R}),SO(n-1,\mathbb{R}))$$

Bilinear form induces round metric on $SO(n, \mathbb{R})/SO(n-1, \mathbb{R}) \cong \mathbb{S}^n$, and that metric is preserved exactly by $H = SO(n, \mathbb{R})$.

$$G = SL(n+1,\mathbb{R}), \quad P = P_{SL}, \quad H = SO(p,q).$$

 CASE I: If form is definite (p = 0 or q = 0), then H ≅ SO(n, ℝ) acts transitively on Sⁿ with stabilizer P_a = P_{SL} ∩ H = SO(n − 1, ℝ).
 Klein geometry:

$$(SO(n,\mathbb{R}),SO(n-1,\mathbb{R}))$$

Bilinear form induces round metric on $SO(n, \mathbb{R})/SO(n-1, \mathbb{R}) \cong \mathbb{S}^n$, and that metric is preserved exactly by $H = SO(n, \mathbb{R})$.

Remark

The curved version of $(SO(n, \mathbb{R}), SO(n - 1, \mathbb{R}))$ is also Riemannian geometry, but with the round metric as its model.

Example (cont.)

► CASE II: If form is indefinite (p, q > 0), then H ≈ SO(p, q) has three orbits on Sⁿ, determined by the causality type of the stabilized ray:

Example (cont.)

- ► CASE II: If form is indefinite (p, q > 0), then H ≅ SO(p, q) has three orbits on Sⁿ, determined by the causality type of the stabilized ray:
 - ► If the ray stabilized by P_{SL} is positive definite, then P₊ is the stabilizer of a positive definite ray in ℝⁿ: The Klein geometry is

 $\overline{(\mathsf{SO}(p,q),\mathsf{SO}(p{-}1,q))}, \quad X_+ = \operatorname{SO}(p,q)/\operatorname{SO}(p{-}1,q) \cong \mathbb{S}^{p-1,q}$

Corresponding geometry: Pseudo-Riemannian, signature (p-1, q).)

Example (cont.)

- ► CASE II: If form is indefinite (p, q > 0), then H ≅ SO(p, q) has three orbits on Sⁿ, determined by the causality type of the stabilized ray:
 - ► If the ray stabilized by P_{SL} is positive definite, then P₊ is the stabilizer of a positive definite ray in ℝⁿ: The Klein geometry is

 $\overline{(\mathsf{SO}(p,q),\mathsf{SO}(p{-}1,q))}, \quad X_+ = \operatorname{SO}(p,q)/\operatorname{SO}(p{-}1,q) \cong \mathbb{S}^{p-1,q}$

Corresponding geometry: Pseudo-Riemannian, signature (p-1, q).)

...negative definite...

 $(SO(p,q), SO(p,q-1)), \quad X_+ = SO(p,q) / SO(p,q-1) \cong \mathbb{S}^{p,q-1}$...(p,q-1). Example (cont. again)

► CASE II (cont): If form is indefinite (p, q > 0), then H ≈ SO(p, q) has three orbits on Sⁿ, determined by the causality type of the stabilized ray:

Example (cont. again)

- CASE II (cont): If form is indefinite (p, q > 0), then H ≅ SO(p, q) has three orbits on Sⁿ, determined by the causality type of the stabilized ray:
 - P₀ = P_{SL} ∩ H = P_{SO}, the stabilizer of a null ray in ℝⁿ: The Klein geometry is

$$(\mathsf{SO}(p,q), P_{\mathsf{SO}}), \quad X_0 \cong \mathbb{S}^{p-1} \times \mathbb{S}^{q-1}$$

Bilinear form induces round conformal structure X_0 , and that structure is preserved exactly by SO(p, q).

Example (cont. again)

- CASE II (cont): If form is indefinite (p, q > 0), then H ≅ SO(p, q) has three orbits on Sⁿ, determined by the causality type of the stabilized ray:
 - P₀ = P_{SL} ∩ H = P_{SO}, the stabilizer of a null ray in ℝⁿ: The Klein geometry is

$$(\mathsf{SO}(p,q), P_{\mathsf{SO}}), \quad X_0 \cong \mathbb{S}^{p-1} \times \mathbb{S}^{q-1}$$

Bilinear form induces round conformal structure X_0 , and that structure is preserved exactly by SO(p, q).

► Corresponding geometry: Oriented conformal geometry of signature (p - 1, q - 1).)

• Pick suitable properties of (G, P) to generalize.

- Pick suitable properties of (G, P) to generalize.
- Can encode in an *P*-principal bundle $G \rightarrow G/P$.

- Pick suitable properties of (G, P) to generalize.
- Can encode in an *P*-principal bundle $G \rightarrow G/P$.
- ► Total space G is equipped with tautological Maurer-Cartan form ω_{MC} ∈ Γ(T*G ⊗ g):

$$\omega_{MC}(X_g) := T_g L_{g^{-1}} \cdot X_g \in T_e G \cong \mathfrak{g}.$$

- Pick suitable properties of (G, P) to generalize.
- Can encode in an *P*-principal bundle $G \rightarrow G/P$.
- ► Total space G is equipped with tautological Maurer-Cartan form ω_{MC} ∈ Γ(T*G ⊗ g):

$$\omega_{MC}(X_g) := T_g L_{g^{-1}} \cdot X_g \in T_e G \cong \mathfrak{g}.$$

- ω_{MC} satisfies nice properties:
 - P-equivariance
 - $\blacktriangleright (\omega_{MC})_g : T_g G \stackrel{\cong}{\to} \mathfrak{g}$
 - Maps invariant vector field generated by $X \in \mathfrak{h}$ to X.

Cartan geometry

• A Cartan geometry of type (G, P) is a pair $(\mathcal{G} \to M, \omega)$ where \mathcal{G} is a *P*-principal bundle and ω is a Cartan connection thereon, namely, a form $\omega \in \Gamma(T^*G \otimes \mathfrak{g})$ satisfying the conditions on the previous page (replacing \mathcal{G} with G).

Cartan geometry (cont.)

Arise naturally as output of Cartan's Method of Equivalence, which (sometimes, and sometimes canonically) assigns geometric structures of a given type to Cartan geometries of a corresponding type (G, P).

Cartan geometry (cont.)

- ► Arise naturally as output of Cartan's Method of Equivalence, which (sometimes, and sometimes canonically) assigns geometric structures of a given type to Cartan geometries of a corresponding type (G, P).
- Main advantages:
 - Treats a wide variety of geometric structures in a common framework.
 - When a canonical construction (structure) → ω exists, ω encodes higher-order data of the structure and can be used to construct invariants, most importantly, *curvature* Ω := dω + ½[ω,ω] (vanishes for (G, ω_{MC})).

Holonomy of a Cartan geometry

The appropriate curved analogue of reduction to a group H < G in a Klein geometry (G, P) is reduction of the holonomy group of the Cartan connection.

Holonomy of a Cartan geometry

- The appropriate curved analogue of reduction to a group H < G in a Klein geometry (G, P) is reduction of the holonomy group of the Cartan connection.
- Though ω is not a principal connection, it extends uniquely equivariantly to a principal connection ω̂ on Ĝ := G ×_P G. Then, declare Hol(ω) := Hol(ω̃), so Hol(ω) is a subgroup (more precisely, a conjugacy class of subgroups) in G.

Holonomy of a Cartan geometry

- The appropriate curved analogue of reduction to a group H < G in a Klein geometry (G, P) is reduction of the holonomy group of the Cartan connection.
- Though ω is not a principal connection, it extends uniquely equivariantly to a principal connection ω̂ on Ĝ := G ×_P G. Then, declare Hol(ω) := Hol(ω̃), so Hol(ω) is a subgroup (more precisely, a conjugacy class of subgroups) in G.
- Q: For (G, ω) of type (G, P), what are the geometric consequences of fixing a subgroup (conjugacy class thereof) Hol(ω) ≤ H ≤ G?

Alternative formulation: tractor geometry

Fix (G, ω). For any representation W of G, consider the associated vector bundle W := G ×_P W; ω induces a vector bundle connection ∇^W, and Hol(∇^W) ≅ Hol(ω).

Alternative formulation: tractor geometry

Fix (G, ω). For any representation W of G, consider the associated vector bundle W := G ×_P W; ω induces a vector bundle connection ∇^W, and Hol(∇^W) ≅ Hol(ω).

Remark

In the case of projective geometry, the tractor bundle determined by $\mathbb{V}^* = (\mathbb{R}^{n+1})^*$ is canonically isomorphic to $J^1 \mathcal{E}(1)$, where $\mathcal{E}(1)$ is the bundle of densities of projective weight 1.

 (Not maximally general but covers many important cases:) Suppose for some representation W that s ∈ Γ(W) is a ∇^W-parallel, so that Hol(∇^W) ≤ H := Stab_G(s).

- (Not maximally general but covers many important cases:) Suppose for some representation W that s ∈ Γ(W) is a ∇^W-parallel, so that Hol(∇^W) ≤ H := Stab_G(s).
- ► By definition, s corresponds to a P-equivariant map G → W or just as well a G-equivariant map s : G → W.

- (Not maximally general but covers many important cases:) Suppose for some representation W that s ∈ Γ(W) is a ∇^W-parallel, so that Hol(∇^W) ≤ H := Stab_G(s).
- ▶ By definition, s corresponds to a P-equivariant map G → W or just as well a G-equivariant map s : G → W.
- ▶ Then, the *G*-orbit $\mathcal{O} := G \cdot \underline{s}(u) \subset \mathbb{W}$ is independent of *u*; we call this orbit the *G*-type of *s*.

- (Not maximally general but covers many important cases:) Suppose for some representation W that s ∈ Γ(W) is a ∇^W-parallel, so that Hol(∇^W) ≤ H := Stab_G(s).
- ▶ By definition, s corresponds to a P-equivariant map G → W or just as well a G-equivariant map s : G → W.
- ▶ Then, the *G*-orbit $\mathcal{O} := G \cdot \underline{s}(u) \subset \mathbb{W}$ is independent of *u*; we call this orbit the *G*-type of *s*.
- Since ∇^W is a tractor connection, for any x ∈ M, the P-orbit P · <u>s</u>(u) ⊂ O is independent of the choice of u ∈ G_x; this is the P-type.

C.o.d.: Main Theorem

Unwinding definitions shows that the P-type of a point on the flat model is determined exactly by its H orbit, so we call the set of points with a given P-type a curved orbit. This gives the curved orbit decomposition

$$M:=\coprod_{a\in P\setminus \mathcal{O}}M_a$$

that generalizes the *H*-orbit decomposition of G/P.

C.o.d.: Main Theorem

Unwinding definitions shows that the P-type of a point on the flat model is determined exactly by its H orbit, so we call the set of points with a given P-type a curved orbit. This gives the curved orbit decomposition

$$M:=\coprod_{a\in P\setminus \mathcal{O}}M_a$$

that generalizes the *H*-orbit decomposition of G/P.

Theorem (Čap, Gover, Hammerl)

Given a Cartan geometry (\mathcal{G}, ω) of type (\mathcal{G}, P) and a conjugacy class of groups $\operatorname{Hol}(\omega) \leq H \leq G$, we get the above decomposition, and each M_a is respectively equipped with a Cartan geometry of type (H, P_a) , given by appropriate pullbacks via inclusions $\mathcal{G}_a \hookrightarrow \mathcal{G}|_{M_a}$.

Example: Orthogonal reduction redux

Suppose $h \in \overline{\Gamma(S^2 \mathcal{V}^*)}$ is nondegenerate of signature (p, q).

 $G := \mathsf{SL}(n+1,\mathbb{R}), \quad P := P_{\mathsf{SL}}, \quad H := \mathsf{Stab}_G(s) \cong \mathsf{SO}(p,q)$

We know from understanding the reduction of the Klein geometry (G, P) to H that there are three curved orbits: M_{\pm} inherit (pseudo-)Riemannian structures of signatures (p - 1, q), (p, q - 1), and M_0 inherits a conformal structure of signature (p - 1, q - 1).

Example: Orthogonal reduction redux

Suppose $h \in \overline{\Gamma(S^2 \mathcal{V}^*)}$ is nondegenerate of signature (p, q).

 $G := \mathsf{SL}(n+1,\mathbb{R}), \quad P := P_{\mathsf{SL}}, \quad H := \mathsf{Stab}_G(s) \cong \mathsf{SO}(p,q)$

We know from understanding the reduction of the Klein geometry (G, P) to H that there are three curved orbits: M_{\pm} inherit (pseudo-)Riemannian structures of signatures (p - 1, q), (p, q - 1), and M_0 inherits a conformal structure of signature (p - 1, q - 1).

How to realize underlying structures explicitly?

Example (cont.): Constructing the geometric structure

Example ((Pseudo-)Riemannian structures)

An oriented projective structure comes equipped with a preferred section $X \in \Gamma(\mathcal{V} \otimes \mathcal{E}(1))$ —identifiable with the canonical projection $J^1\mathcal{E}(1) \cong \mathcal{V}^* \to \mathcal{E}(1)$, and we can construct a canonical weighted object $\tau := h(X, X) \in \Gamma(\mathcal{E}(2))$. By construction, $M_+ = \{x : h(X, X)_x > 0\}$, and we can pick a connection $\nabla \in \mathbf{p}|_{M_+}$ s.t. $\nabla \tau = 0$. Then, the projective Schouten tensor P^{∇} is nondegenerate because h is, and $\nabla^{\mathcal{V}}h = 0$ implies that $\nabla \mathsf{P}^{\nabla} = \frac{1}{n} \nabla \operatorname{Ric} = 0$, so ∇ is the Levi-Civita connection of the Einstein metric $g := \mathsf{P}^{\nabla}$.

Two comments

Remark (Compactification)

The fact that the metric g on M_+ and conformal structure c on M_0 both arise from h imposes strong compatibility conditions between the two structures. This leads to a notion of compactification of a (pseudo-)Riemannian metric with appropriate asymptotics by conformal geometry, all mediated via projective geometry.

Two comments

Remark (Compactification)

The fact that the metric g on M_+ and conformal structure c on M_0 both arise from h imposes strong compatibility conditions between the two structures. This leads to a notion of compactification of a (pseudo-)Riemannian metric with appropriate asymptotics by conformal geometry, all mediated via projective geometry.

The map $\Pi^{S^2\mathcal{V}^*}: S^2\mathcal{V}^* \rightsquigarrow \mathcal{E}(2), s \mapsto s(X, X)$, is the *BGG* projection operator associated to \mathbb{W} . For any \mathbb{W} we get such a projection, and this map relates the holonomy reduction the geometry to an object that can usually be interpreted as data on the underlying manifold. If $\nabla^{\mathcal{W}}s = 0$, then $\Pi(s)$ is a solution to an invariant *BGG operator*.

Example: G₂ (case studied <u>w</u> Gover, Panai)

 $G := SL(7, \mathbb{R}), \quad P := P_{SL}, \quad H := G_2 \quad (\dim M = 6)$

- G₂ → SO(3, 4) so this reduction refines the orthogonal one. Now, G₂ acts transitively on each of X₊, X₀, X₋, but we expect that the stronger reduction should determine more geometric structure on each orbit.
- G₂ reduction can be encoded by a parallel Φ ∈ Γ(Λ³𝒱^{*}) of the appropriate *G*-type; determines h_Φ ∈ Γ(S²𝒱^{*}).
- Object underlying Φ. is section of Λ²(T*M(3)). On M₊, trivializing with a power of τ > 0 and raising an index gives a complex structure J. Then ∇^{∧3}ν*Φ = 0 implies that (g, J) defines a nearly Kähler structure on M₊.
- ▶ Similarly, on *M*_, get a nearly para-Kähler structure.

Example: G_2 (cont.)

On M₀, the conformal structure has holonomy contained in G₂; Nurowski showed these are (2, 3, 5) conformal structures: These are induced canonically by distributions D satisfying [D, [D, D]] = TM₀.

Example: G_2 (cont.)

- On M₀, the conformal structure has holonomy contained in G₂; Nurowski showed these are (2, 3, 5) conformal structures: These are induced canonically by distributions D satisfying [D, [D, D]] = TM₀.
- ▶ In this case, object underlying is a section $J_0 \in \Gamma(\text{End}(TM_0) \otimes \mathcal{E}[1])$. Then, we recover $D = \text{im}(J_0) \otimes \mathcal{E}[-1]$, and $[D, D] = \text{ker } J_0$.

 $G := SL(2m+2,\mathbb{R}), \quad P := P_{SL}, \quad H := U(p',q'), \ p'+q' = m+1$

 $G := \mathsf{SL}(2m+2,\mathbb{R}), \quad P := P_{\mathsf{SL}}, \quad H := \mathsf{U}(p',q'), \ p'+q'=m+1$

► Two-out-of-three Rule: U(p', q') is the intersection of any two of (mutually compatible)

 $SO(2p', 2q'), GL(2m+2, \mathbb{C}), Sp(2m+2, \mathbb{R});$

can study these reductions separately and distill which features arise from which intermediate holonomy reductions; these three studied by Armstrong but only described briefly.

 $G := \mathsf{SL}(2m+2,\mathbb{R}), \quad P := P_{\mathsf{SL}}, \quad H := \mathsf{U}(p',q'), \ p'+q' = m+1$

► Two-out-of-three Rule: U(p', q') is the intersection of any two of (mutually compatible)

 $SO(2p', 2q'), GL(2m+2, \mathbb{C}), Sp(2m+2, \mathbb{R});$

can study these reductions separately and distill which features arise from which intermediate holonomy reductions; these three studied by Armstrong but only described briefly.

► Sp(2m + 2, ℝ): Underlying object: normal solution of Killing-type equation; induced geometry: (torsion-free) contact projective geometry

 $G := \mathsf{SL}(2m+2,\mathbb{R}), \quad P := P_{\mathsf{SL}}, \quad H := \mathsf{U}(p',q'), \ p'+q' = m+1$

► Two-out-of-three Rule: U(p', q') is the intersection of any two of (mutually compatible)

SO(2p', 2q'), $GL(2m+2, \mathbb{C})$, $Sp(2m+2, \mathbb{R})$;

can study these reductions separately and distill which features arise from which intermediate holonomy reductions; these three studied by Armstrong but only described briefly.

- ► Sp(2m + 2, ℝ): Underlying object: normal solution of Killing-type equation; induced geometry: (torsion-free) contact projective geometry
- ► GL(2m + 2, C): Underlying object: normal solution k of "adjoint BGG operator"; geometry (provided k is a projective symmetry, equiv., W_{da}^b_ck^d = 0): natural bundle with model fiber U(1) over integrable c-projective structure.

In fact, a reduction to U(p, q) (locally) implies a reduction to SU(p, q), which acts transitively on each of M_+ , M_0 , M_- ; k is automatically a projective symmetry.

In fact, a reduction to U(p, q) (locally) implies a reduction to SU(p, q), which acts transitively on each of M_+, M_0, M_- ; k is automatically a projective symmetry.

On M₊, Sasaki-Einstein structure (dim 2m + 1); locally fibers over Kähler-Einstein structure (M
₊, g
, J
) (dim 2m) with model fibers U(1); c-projective structure is (M₊, J
, [∇^g])

In fact, a reduction to U(p, q) (locally) implies a reduction to SU(p, q), which acts transitively on each of M_+ , M_0 , M_- ; k is automatically a projective symmetry.

- On M₊, Sasaki-Einstein structure (dim 2m + 1); locally fibers over Kähler-Einstein structure (M
 ₊, g
 , J
) (dim 2m) with model fibers U(1); c-projective structure is (M₊, J, [∇^g])
- On M₀, Fefferman conformal structure of signature (2p' − 1, 2q' − 1), i.e., induced on circle bundle over manifold M
 ₀ (dim 2m − 1) equipped with by hypersurface-type (in fact, integrable) CR structure with (nondegenerate) Levi-form (p' − 1, q' − 1).

In fact, a reduction to U(p, q) (locally) implies a reduction to SU(p, q), which acts transitively on each of M_+, M_0, M_- ; k is automatically a projective symmetry.

- On M₊, Sasaki-Einstein structure (dim 2m + 1); locally fibers over Kähler-Einstein structure (M
 ₊, g
 , J
) (dim 2m) with model fibers U(1); c-projective structure is (M₊, J, [∇^g])
- On M₀, Fefferman conformal structure of signature (2p' − 1, 2q' − 1), i.e., induced on circle bundle over manifold M
 ₀ (dim 2m − 1) equipped with by hypersurface-type (in fact, integrable) CR structure with (nondegenerate) Levi-form (p' − 1, q' − 1).
- Downstairs (on barred objects) we get a compactification of Kähler-Einstein structures with appropriate asymptotics by CR structures—this is the classical one (can regard as mediated by c-projective geometry), which is hence compatible with the projective compactification.

Thank you.