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Klein geometry

I A Klein geometry is a pair (G ,P), where G is a Lie group,
and P is a closed subgroup (might impose additional
conditions, like G/P connected).

I Idea: This encodes a homogeneous geometric structure on
G/P for which G is the symmetry group.

Example ((Oriented) Euclidean space)

The isometry group of (Rn, ḡ) is G := SO(n,R)i Rn, which acts
transitively with stabilizer P := SO(n,R), so G/H ∼= Rn.

I Later: We want to generalize (G ,P) to ‘curved verions’ of
that geometry (Cartan geometries) in the same way that
Riemannian metrics (M, g) generalize (Rn, ḡ). In this context,
we call (G ,P) the flat model of the geometry it defines.
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Projective (differential) geometry

Definition
A projective structure on a smooth manifold M is an equivalence
class p = [∇] of torsion-free connections on M, where ∇ ∼ ∇̂ iff
∇, ∇̂ share the same geodesics.

I ∇ ∼ ∇̂ iff there is an Υ ∈ Γ(T ∗M) such that

∇̂aηb = ∇aηb + Υaηb + Υbηa ∀η ∈ Γ(T ∗M).

Example (Projective sphere)

Let π : Rn+1 − {0} → Sn denote the ray projectivization. There is
a connection ∇̄ for which the geodesics are precisely (the arcs of)
the great circles, that is, the circles π(Π− {0}), Π ∈ G(2,Rn+1).
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Flat model of (real, oriented) projective geometry

I Take G := SL(n + 1,R), P = PSL < G the stabilizer of a ray
in Rn+1.

I G/P := SL(n + 1,R)/P = {space of rays} = Sn

I G maps 2d subspaces Π ⊂ Rn+1 to 2-planes, so it preserves
lines (great circles) in Sn, i.e., the flat projective structure
p̄ := [∇̄].
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Reduction of a flat model

I For given (G ,P), we investigate consequences of fixing a
conjugacy class of subgroups H < G , with a view toward
understanding whatever the analogue is in the curved (Cartan
geometry) setting.

I The left action of H on X := G/P determines a
decomposition X =

∐
a Xa into H-orbits.

I The H-action realizes each orbit Xa is a homogeneous space
(H,Pa).

I Morally Pa = H ∩ P , and more precisely, the H-orbits
parameterize the intersections of conjugates of H with P up to
conjugacy.
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Example: Projective geometry, orthogonal reduction

G = SL(n + 1,R), P = PSL, H = SO(p, q).

I CASE I: If form is definite (p = 0 or q = 0), then
H ∼= SO(n,R) acts transitively on Sn with stabilizer
Pa = PSL ∩ H = SO(n − 1,R).

Klein geometry:

(SO(n,R), SO(n − 1,R))

Bilinear form induces round metric on
SO(n,R)/ SO(n − 1,R) ∼= Sn, and that metric is preserved
exactly by H = SO(n,R).

Remark
The curved version of (SO(n,R), SO(n − 1,R)) is also Riemannian
geometry, but with the round metric as its model.
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Example (cont.)

I CASE II: If form is indefinite (p, q > 0), then H ∼= SO(p, q)
has three orbits on Sn, determined by the causality type of the
stabilized ray:

I If the ray stabilized by PSL is positive definite, then P+ is the
stabilizer of a positive definite ray in Rn: The Klein geometry is

(SO(p, q), SO(p−1, q)), X+ = SO(p, q)/ SO(p−1, q) ∼= Sp−1,q

Corresponding geometry: Pseudo-Riemannian, signature
(p − 1, q).)

I ...negative definite...

(SO(p, q), SO(p, q−1)), X+ = SO(p, q)/ SO(p, q−1) ∼= Sp,q−1

...(p, q − 1).
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Example (cont. again)

I CASE II (cont): If form is indefinite (p, q > 0), then
H ∼= SO(p, q) has three orbits on Sn, determined by the
causality type of the stabilized ray:

I P0 = PSL ∩ H = PSO , the stabilizer of a null ray in Rn: The
Klein geometry is

(SO(p, q),PSO), X0 ∼= Sp−1 × Sq−1

Bilinear form induces round conformal structure X0, and that
structure is preserved exactly by SO(p, q).

I Corresponding geometry: Oriented conformal geometry of
signature (p − 1, q − 1).)
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Generalization: Preparation

I Pick suitable properties of (G ,P) to generalize.

I Can encode in an P-principal bundle G → G/P .
I Total space G is equipped with tautological Maurer-Cartan

form ωMC ∈ Γ(T ∗G ⊗ g):

ωMC (Xg ) := TgLg−1 · Xg ∈ TeG ∼= g.

I ωMC satisfies nice properties:

I P-equivariance
I (ωMC )g : TgG

∼=→ g
I Maps invariant vector field generated by X ∈ h to X .
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Cartan geometry

I A Cartan geometry of type (G ,P) is a pair (G → M, ω) where
G is a P-principal bundle and ω is a Cartan connection
thereon, namely, a form ω ∈ Γ(T ∗G ⊗ g) satisfying the
conditions on the previous page (replacing G with G ).



Cartan geometry (cont.)

I Arise naturally as output of Cartan’s Method of Equivalence,
which (sometimes, and sometimes canonically) assigns
geometric structures of a given type to Cartan geometries of a
corresponding type (G ,P).

I Main advantages:

I Treats a wide variety of geometric structures in a common
framework.

I When a canonical construction (structure) ω exists, ω
encodes higher-order data of the structure and can be used to
construct invariants, most importantly, curvature
Ω := dω + 1

2 [ω, ω] (vanishes for (G , ωMC )).
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Holonomy of a Cartan geometry

I The appropriate curved analogue of reduction to a group
H < G in a Klein geometry (G ,P) is reduction of the
holonomy group of the Cartan connection.

I Though ω is not a principal connection, it extends uniquely
equivariantly to a principal connection ω̂ on Ĝ := G ×P G .
Then, declare Hol(ω) := Hol(ω̃), so Hol(ω) is a subgroup
(more precisely, a conjugacy class of subgroups) in G .

I Q: For (G, ω) of type (G ,P), what are the geometric
consequences of fixing a subgroup (conjugacy class thereof)
Hol(ω) ≤ H ≤ G?
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Alternative formulation: tractor geometry

I Fix (G, ω). For any representation W of G , consider the
associated vector bundle W := G ×P W; ω induces a vector
bundle connection ∇W , and Hol(∇W) ∼= Hol(ω).

Remark
In the case of projective geometry, the tractor bundle determined by
V∗ = (Rn+1)∗ is canonically isomorphic to J1E(1), where E(1) is
the bundle of densities of projective weight 1.
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Curved orbit decomposition

I (Not maximally general but covers many important cases:)
Suppose for some representation W that s ∈ Γ(W) is a
∇W -parallel, so that Hol(∇W) ≤ H := StabG (s).

I By definition, s corresponds to a P-equivariant map G →W or
just as well a G -equivariant map s : Ĝ →W.

I Then, the G -orbit O := G · s(u) ⊂W is independent of u; we
call this orbit the G -type of s.

I Since ∇W is a tractor connection, for any x ∈ M, the P-orbit
P · s(u) ⊂ O is independent of the choice of u ∈ Gx ; this is
the P-type.
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C.o.d.: Main Theorem

I Unwinding definitions shows that the P-type of a point on the
flat model is determined exactly by its H orbit, so we call the
set of points with a given P-type a curved orbit. This gives
the curved orbit decomposition

M :=
∐

a∈P\O

Ma

that generalizes the H-orbit decomposition of G/P .

Theorem (Čap, Gover, Hammerl)

Given a Cartan geometry (G, ω) of type (G ,P) and a conjugacy
class of groups Hol(ω) ≤ H ≤ G , we get the above decomposition,
and each Ma is respectively equipped with a Cartan geometry of
type (H,Pa), given by appropriate pullbacks via inclusions
Ga ↪→ G|Ma .
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Example: Orthogonal reduction redux

Suppose h ∈ Γ(S2V∗) is nondegenerate of signature (p, q).

G := SL(n + 1,R), P := PSL, H := StabG (s) ∼= SO(p, q)

We know from understanding the reduction of the Klein geometry
(G ,P) to H that there are three curved orbits: M± inherit
(pseudo-)Riemannian structures of signatures (p − 1, q), (p, q − 1),
and M0 inherits a conformal structure of signature (p − 1, q − 1).

I How to realize underlying structures explicitly?
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Example (cont.): Constructing the geometric structure

Example ((Pseudo-)Riemannian structures)

An oriented projective structure comes equipped with a preferred
section X ∈ Γ(V ⊗ E(1))—identifiable with the canonical projection
J1E(1) ∼= V∗ → E(1), and we can construct a canonical weighted
object τ := h(X ,X ) ∈ Γ(E(2)). By construction,
M+ = {x : h(X ,X )x > 0}, and we can pick a connection
∇ ∈ p|M+ s.t. ∇τ = 0. Then, the projective Schouten tensor P∇ is
nondegenerate because h is, and ∇Vh = 0 implies that
∇P∇ = 1

n∇Ric = 0, so ∇ is the Levi-Civita connection of the
Einstein metric g := P∇.



Two comments

Remark (Compactification)

The fact that the metric g on M+ and conformal structure c on M0
both arise from h imposes strong compatibility conditions between
the two structures. This leads to a notion of compactification of a
(pseudo-)Riemannian metric with appropriate asymptotics by
conformal geometry, all mediated via projective geometry.

The map ΠS2V∗
: S2V∗  E(2), s 7→ s(X ,X ), is the BGG

projection operator associated to W. For any W we get such a
projection, and this map relates the holonomy reduction the
geometry to an object that can usually be interpreted as data
on the underlying manifold. If ∇Ws = 0, then Π(s) is a
solution to an invariant BGG operator.
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The fact that the metric g on M+ and conformal structure c on M0
both arise from h imposes strong compatibility conditions between
the two structures. This leads to a notion of compactification of a
(pseudo-)Riemannian metric with appropriate asymptotics by
conformal geometry, all mediated via projective geometry.

The map ΠS2V∗
: S2V∗  E(2), s 7→ s(X ,X ), is the BGG

projection operator associated to W. For any W we get such a
projection, and this map relates the holonomy reduction the
geometry to an object that can usually be interpreted as data
on the underlying manifold. If ∇Ws = 0, then Π(s) is a
solution to an invariant BGG operator.



Example: G2 (case studied w Gover, Panai)

G := SL(7,R), P := PSL, H := G2 (dimM = 6)

I G2 ↪→ SO(3, 4) so this reduction refines the orthogonal one.
Now, G2 acts transitively on each of X+,X0,X−, but we
expect that the stronger reduction should determine more
geometric structure on each orbit.

I G2 reduction can be encoded by a parallel Φ ∈ Γ(∧3V∗) of the
appropriate G -type; determines hΦ ∈ Γ(S2V∗).

I Object underlying Φ. is section of Λ2(T ∗M(3)). On M+,
trivializing with a power of τ > 0 and raising an index gives a
complex structure J. Then ∇∧3V∗

Φ = 0 implies that (g , J)
defines a nearly Kähler structure on M+.

I Similarly, on M−, get a nearly para-Kähler structure.



Example: G2 (cont.)

I On M0, the conformal structure has holonomy contained in
G2; Nurowski showed these are (2, 3, 5) conformal structures:
These are induced canonically by distributions D satisfying
[D, [D,D]] = TM0.

I In this case, object underlying is a section
J0 ∈ Γ(End(TM0)⊗ E [1]). Then, we recover
D = im(J0)⊗ E [−1], and [D,D] = ker J0.
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Example: U(p′, q′) (case studied w Gover, Neusser)

G := SL(2m+ 2,R), P := PSL, H := U(p′, q′), p′+ q′ = m+ 1

I Two-out-of-three Rule: U(p′, q′) is the intersection of any two
of (mutually compatible)

SO(2p′, 2q′), GL(2m + 2,C), Sp(2m + 2,R);

can study these reductions separately and distill which features
arise from which intermediate holonomy reductions; these
three studied by Armstrong but only described briefly.

I Sp(2m + 2,R): Underlying object: normal solution of
Killing-type equation; induced geometry: (torsion-free) contact
projective geometry

I GL(2m + 2,C): Underlying object: normal solution k of
“adjoint BGG operator”; geometry (provided k is a projective
symmetry, equiv., Wda

b
ck

d = 0): natural bundle with model
fiber U(1) over integrable c-projective structure.
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Example: U(p′, q′) (cont.)
In fact, a reduction to U(p, q) (locally) implies a reduction to
SU(p, q), which acts transitively on each of M+,M0,M−; k is
automatically a projective symmetry.

I On M+, Sasaki-Einstein structure (dim 2m + 1); locally fibers
over Kähler-Einstein structure (M̄+, ḡ , J̄) (dim 2m) with
model fibers U(1); c-projective structure is (M+, J̄, [∇ḡ ])

I On M0, Fefferman conformal structure of signature
(2p′ − 1, 2q′ − 1), i.e., induced on circle bundle over manifold
M̄0 (dim 2m − 1) equipped with by hypersurface-type (in fact,
integrable) CR structure with (nondegenerate) Levi-form
(p′ − 1, q′ − 1).

I Downstairs (on barred objects) we get a compactification of
Kähler-Einstein structures with appropriate asymptotics by CR
structures—this is the classical one (can regard as mediated by
c-projective geometry), which is hence compatible with the
projective compactification.
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Thank you.


