
CR TRACTOR GEOMETRY:

ALMOST CR-EINSTEIN STRUCTURES

TRAVIS WILLSE

Abstract. We give a skeletal review of CR tractor geometry, just enough to

state and frame some definitions and results related to almost CR-Einstein
structures. We also give an annotated bibliography for the tractor geometry

of CR structures.

1. Background

1.1. The standard representation T of SU(p + 1, q + 1). Let T ∼= Cp+1,q+1

denote the standard (defining) representation of the special unitary group SU(p+
1, q + 1) of signature (p+ 1, q + 1) and denote a preserved Hermitian structure by
(hAB̄ , JAB). Fix an complex line ` isotropic with respect to h, and denote by P the
stabilizer of ` in SU(p+ 1, q+ 1) of the induced action on PT ∼= CPn+1, n := p+ q.
Then, P preserves the filtration

0 ⊂ ` ⊂ `⊥ ⊂ T;

we denote
T+1 := `, T0 := `⊥, T−1 := T

and write T as the composition series

T = (T/`⊥) (`⊥/`) `.

A choice of isotropic line m ∈ T transverse to `⊥ determines identifications T/`⊥ ∼=
m and `⊥/` ∼= `⊥ ∩m⊥ and so a decomposition

T = m⊕ (`⊥ ∩m⊥)⊕ l.
With respect to a basis (L,E1, . . . , Ep+q,M) that respects this splitting and satisfies

hAB̄L
AM B̄ = 1, the Hermitian metric h has the form

hAB̄ =

 1
h

1

 .

1.2. CR tractor geometry. Recall that the general theory of parabolic geometries
canonically encodes any (integrable, Levi-nondegenerate, hypersurface-type) CR
structure (M,H,J) as a Cartan geometry (G →M,ω) of type (SU(p+1, q+1), P ),
where (p, q) is the signature of Levi form.1 [4, § 4.2.4] Here, G → M is a principal

Date: 2018 November 22.
1Strictly speaking, parabolic geometries of type (SU(p+ 1, q+ 1), P ) (satisfying the normality

and regularity normalization conditions) correspond to CR structures equipped with a choice of

(n + 2)nd root of the canonical bundle
∧n+1(H0,1)⊥, which we denote E(1, 0). For any CR

structure such a root always exists locally but need not exist globally; different choices do not

play a substantive role in the material here. A type of parabolic geometries corresponding to CR
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P -bundle and ω : TG 7→ su(p+ 1, q+ 1) is a Cartan connection; in particular, ω re-
stricts to an isomorphism ωu : TuG

∼=7→ su(p+ 1, q + 1) of vector spaces at each u ∈ G
and is appropriately equivariant with respect to the canonical right P -action on G.
We can view any representation V of SU(p + 1, q + 1) and defined the associated
tractor bundle [4, § 1.5.7]

V := G ×P V

over M ; the typical fiber is isomorphic to V. There, G ×P V := (G × P )/ ∼, where
(u, v) ∼ (u ·p, p−1 ·v) for all (u, v) ∈ G×V, p ∈ P . Then, ω induces a vector bundle
connection ∇V on V.

The tractor bundle associated to the standard representation T is the stan-
dard tractor bundle T (or EA), and the induced connection ∇T is the (stan-
dard) (normal) tractor connection. (Every (finite-dimensional) representation
of SU(p + 1, q + 1) is a subrepresentation of T ⊗a ⊗ (T ∗)⊗b for some a, b.) Since
tractor bundles are associated P -bundles, the filtration (Ti) induces a filtration
(T i) of T . We can canonically identify [8, § 3]

T −1/T 0 ↔ E(0, 1), T 0/T +1 ↔ Eα(−1, 0), T +1 ↔ E(−1, 0),

giving the composition series

EA ∼= E(0, 1) Eα(−1, 0) E(−1, 0).

It is common in this setting to work (equivalently) with the dual tractor bundle T ∗
(or EA) associated to T∗. Then, we can canonically identify

EA ∼= E(1, 0) Eα(1, 0) E(0,−1).

A choice of pseudo-Hermitian structure θ (a nonvanishing section of H⊥ ⊂ T ∗M)
determines a splitting

EA
θ
= E(1, 0)⊕ Eα(1, 0)⊕ E(0,−1);

with respect to this splitting, we can write a section tA ∈ Γ(T ) = Γ(EA) as

tA
θ
=

 ρ
τα
σ

 ∈ Γ

E(0,−1)
Eα(1, 0)
E(1, 0)

 .

The canonical projection T → T/`⊥ induces the projection Π : T → E(1, 0) onto
the bottom slot; by construction this projection does not depend on the choice θ of
pseudo-Hermitian structure.

structures without this additional discrete data is (PSU(p+1, q+1), PP ), where PP is the image

of P under the quotient map SU(p+1, q+1)→ PSU(p+1, q+1). Our main motivation for using
SU(p+1, q+1) rather than PSU(p+1, q+1) is that the former admits faithful finite-dimensional
representations, which play an essential role in the tractor calculus.
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The corresponding tractor connection, which we also denote by ∇T or just ∇,
is given by

∇β

 ρ
τα
σ

 =

∇βρ− Pβ
γτγ + Tβσ

∇βτα + iAαβσ
∇βσ − τβ


∇β̄

 ρ
τα
σ

 =

∇β̄ρ− iAβ̄ατα − Tβ̄σ∇β̄τα + hαβ̄ρ+ Pαβ̄σ
∇β̄σ


∇0

 ρ
τα
σ

 =

 ∇0ρ+ i
n+2Pρ+ 2iTατα + iSσ

∇0τα − iPαγτγ + i
n+2Pτα + 2iTασ

∇0σ + i
n+2Pσ − iρ

 ,

where on the right-hand-side ∇ denotes the connection on the respective weighted
bundles induced by the Tanaka-Webster connection corresponding to θ,2 where

Pαβ̄ =
1

n+ 2

(
Rαβ̄ −

1

2(n+ 1)
Rhαβ̄

)
Tα =

1

n+ 2
(∇αP− i∇βAαβ)

S = − 1

n
(∇αTα +∇ᾱTᾱ + Pαβ̄Pαβ̄ −AαβAαβ),

and where P := Pγ
γ .

2. Almost CR-Einstein structures

By analogy with the conformal setting [1], and following [2, § 4.14], we define
an almost CR-Einstein structure to be a section IA ∈ Γ(T ∗) parallel with

respect to the tractor connection ∇.3 If IA =
(
ρ τα σ

)⊥
is a parallel tractor,

then expanding the bottom slot of ∇βIA = 0 gives that τα = ∇ασ, and then
substituting and expanding the middle slot of ∇β̄σ gives

(1) ∇β̄∇ασ + Pαβ̄σ + hαβ̄ρ = 0,

so that4

IA
θ
=

− 1
n (∇β∇βσ + Pσ)

∇ασ
σ

 .

2The expressions on the right-hand side of formula for the derivative in the 0-direction simplify
some when written in terms of the Weyl connection∇W that coincides with∇ in contact directions

but satisfies ∇W0 σ = ∇0σ + i
n+2

Pσ and ∇W0 τα = ∇0τα − iPαβτβ . See [2, § 3.4.1].
3This is more than an analogy: Recall that the Fefferman construction canonically assigns to

(M,H,J) a circle bundle F → M equipped with a canonical Fefferman conformal structure

c. In particular, we can identify the standard tractor bundle of (F , c), and the normal CR and
conformal tractor connections are related in a way that the pullback of a parallel section t is

a parallel conformal standard tractor. These latter correspond with almost Einstein scales,

establishing a bijective correspondence between almost CR-Einstein structures of a CR structure
and almost Einstein scales of the induced Fefferman conformal structure.

4The map Γ(E(1, 0))→ Γ(T ) on sections that maps σ to the section defined by the right-hand
side does not depend on the choice of pseudo-Hermitian structure θ and is called the first BGG

splitting operator associated to T.
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Now, the middle slot of ∇βIA = 0 and the bottom slot of ∇β̄IA = 0 give that
Π(I) = σ satisfies the invariant system

∇α∇βσ + iσAαβ = 0,(2)

∇β̄σ = 0.(3)

Remark. Since this system is invariant, so are the respective differential opera-
tors Θ(2) : Γ(E(1, 0)) → Γ(

⊙2
H∗(1, 0)) (second order) and Θ(1) : Γ(E(1, 0)) →

Γ(H(1, 0)) (first order) defined by mapping σ to the respective right-hand sides
of (2), (3). Together these two maps comprise the first BGG operator for CR
geometry associated to the standard representation T.

The formula for IA in terms of σ gives that Ix depends only on the 2-jet of
σ at x, so if we denote Σ := {σ 6= 0}, then M − Σ is an open, dense subset of
M . Now, σσ̄ ∈ Γ(E(1, 1)) is a scale on M − Σ and determines a Hermitian metric
(σσ̄)−1hαβ̄ . If σ vanishes nowhere (for example, taking σ|M−Σ), we call I a CR-
Einstein structure and σ a CR-Einstein scale; henceforth we work in this setting.

Using the corresponding pseudo-Hermitian connection ∇, we have ∇α(σσ̄) = 0,
and then (3) implies ∇ασ = 0. If θ is the corresponding pseudo-Hermitian form,
then

(4) IA
θ
=

− 1
nPσ
0
σ

 .

Moreover, in this scale:

• Simplifying and rearranging (1) gives Pαβ̄ = (−σ−1ρ)hαβ̄ . Since Pαβ̄ is a
trace adjustment of the Webster-Ricci tensor R of θ, this equation implies
that R has zero tracefree part, that is θ (equivalently, hαβ̄) is pseudo-
Einstein in the sense of [9].
• Simplifying (2), that is, Θ(2)(σ) = 0, gives Aαβ = 0, which is equivalent to

the Reeb field T corresponding to θ being an infinitesimal symmetry of the
CR structure (H,J).

Pseudo-Hermitian structures that are pseudo-Einstein and whose corresponding
Reeb field is an infinitesimal symmetry are called transversely symmetric pseudo-
Einstein structures (TSPEs) [10].

These deductions can be reversed:

Proposition 1. [2, Proposition 4.14] A contact form on a CR manifold (M,H,J)
determines a TSPE structure iff the corresponding scale σ is a CR-Einstein scale.

Proof. It remains to prove the forward direction: Assume that for the contact form
θ the Rho tensor Pαβ̄ is a multiple of the Hermitian form hαβ̄ . Now, suppose
for σ ∈ Γ(−1, 0) that σσ̄ is the CR scale corresponding to θ. The fact that the

power σn+2 ∈ Γ(E(−n−2, 0)) = Γ(
∧n+1

(H0,1)⊥) is a volume form normalized with
respect to θ determines σ up to a phase. Now, [9, Theorem 4.2] shows that we may
choose the phase so that d(σn+2) = 0, so ∇β̄σ = 0.

Computing in the scale σσ̄ gives ∇βσ = 0, so Aαβ = 0 implies that σ is a solution
to (2)-(3). Next, the covariant commutator of f ∈ Γ(E(w,w′)) is [8, (2.4)]

[∇α,∇β̄ ]f = (w − w′)
(

Pαβ̄ +
1

n+ 2
Phαβ̄

)
f − ihαβ̄∇0f.
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Specializing to f = σ and rearranging gives i∇0σ = 2(n+1)
n(n+2)Pσ, and then differ-

entiating gives i∇α∇0σ = 2(n+1)
n(n+2)σ∇αP. Now, [8, (2.4)] implies that ∇0 and ∇α

commute on densities, so ∇α∇0σ = ∇0∇ασ = 0 and thus ∇βP = 0. An analogous
argument gives ∇β̄P = 0, and so P is a constant. Putting this altogether gives that
the quantity IA defined by (4) is annihilated by ∇β ,∇β̄ ,∇0. Thus, ∇I = 0 and,
since σ vanishes nowhere, this defines a CR-Einstein scale on M . �
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