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Definition (provisional)

A path geometry on a surface Σ is a family P of
(unparametrized) curves on Σ such that for each point p ∈ Σ and
direction ` ∈ PTpΣ there is exactly 1 curve in P tangent to `.



Example (A gallery of some (homogeneous) path geometries)

Figure: (a) Kepler ellipses of fixed major axis. (b) Kepler parabolas.
(c) Straight lines. (d) Circles of fixed radius. (e) Hooke ellipses of fixed
area. (f) Kepler ellipses of fixed minor axis. (g) Kepler ellipses tangent to
a fixed Kepler ellipse. (h) Circles tangent to a fixed circle (horocycles).



Definition
A (local) equivalence (Σ,P) ∼ (Σ′,P ′) of path geometries is a
(local) diffeomorphism Σ→ Σ′ that (locally) maps paths to paths.

Example

In the gallery we find several local equivalences:
I (b) ∼ (c) ∼ (g)
I (a) ∼ (e) ∼ (f)

Definition
A symmetry of a path geometry (Σ,P) is an equivalence of a path
geometry with itself. A path geometry is locally homogeneous if
its local symmetries act locally transitively.
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Some ways to construct path geometries

I The geodesics of a linear connection ∇ (projective structure
[∇]) constitute a path geometry. The path geometries that
arise this way (locally) are called projective; most path
geometries are not projective.

I In particular, P2 equipped with the straight lines (i.e., images
of punctured 2-dim. subspaces under the projection map
R3 \ {0} → RP2) is the flat model of path geometry.

I A path geometry is flat if it is locally equivalent to
(P2, {straight lines}). Example: (b), (c), (e) are flat.

I Given a path geometry (Σ,P), we can define the dual path
geometry (Σ∗,P∗), where Σ∗ is the space of paths of and P∗
is parametrized by Σ: The path in Σ∗ corresponding to p ∈ Σ
is the space of paths in P passing through p. Example: (a)
and (h) are dual; flat path geometries are self-dual (equivalent
to their dual); (d) is self-dual and nonflat.



Some ways to construct path geometries

I The geodesics of a linear connection ∇ (projective structure
[∇]) constitute a path geometry. The path geometries that
arise this way (locally) are called projective; most path
geometries are not projective.

I In particular, P2 equipped with the straight lines (i.e., images
of punctured 2-dim. subspaces under the projection map
R3 \ {0} → RP2) is the flat model of path geometry.

I A path geometry is flat if it is locally equivalent to
(P2, {straight lines}). Example: (b), (c), (e) are flat.

I Given a path geometry (Σ,P), we can define the dual path
geometry (Σ∗,P∗), where Σ∗ is the space of paths of and P∗
is parametrized by Σ: The path in Σ∗ corresponding to p ∈ Σ
is the space of paths in P passing through p. Example: (a)
and (h) are dual; flat path geometries are self-dual (equivalent
to their dual); (d) is self-dual and nonflat.



Some ways to construct path geometries

I The geodesics of a linear connection ∇ (projective structure
[∇]) constitute a path geometry. The path geometries that
arise this way (locally) are called projective; most path
geometries are not projective.

I In particular, P2 equipped with the straight lines (i.e., images
of punctured 2-dim. subspaces under the projection map
R3 \ {0} → RP2) is the flat model of path geometry.
I A path geometry is flat if it is locally equivalent to

(P2, {straight lines}). Example: (b), (c), (e) are flat.

I Given a path geometry (Σ,P), we can define the dual path
geometry (Σ∗,P∗), where Σ∗ is the space of paths of and P∗
is parametrized by Σ: The path in Σ∗ corresponding to p ∈ Σ
is the space of paths in P passing through p. Example: (a)
and (h) are dual; flat path geometries are self-dual (equivalent
to their dual); (d) is self-dual and nonflat.



Some ways to construct path geometries

I The geodesics of a linear connection ∇ (projective structure
[∇]) constitute a path geometry. The path geometries that
arise this way (locally) are called projective; most path
geometries are not projective.

I In particular, P2 equipped with the straight lines (i.e., images
of punctured 2-dim. subspaces under the projection map
R3 \ {0} → RP2) is the flat model of path geometry.
I A path geometry is flat if it is locally equivalent to

(P2, {straight lines}). Example: (b), (c), (e) are flat.

I Given a path geometry (Σ,P), we can define the dual path
geometry (Σ∗,P∗), where Σ∗ is the space of paths of and P∗
is parametrized by Σ: The path in Σ∗ corresponding to p ∈ Σ
is the space of paths in P passing through p. Example: (a)
and (h) are dual; flat path geometries are self-dual (equivalent
to their dual); (d) is self-dual and nonflat.



Structure on PTΣ

I The 3-manifold PTΣ carries a canonical contact distribution H
given by the skating condition: the point moves along the line,
equivalently, the line rotates around the point. The fibers of
PTΣ→ TΣ are integral curves of H, and we define the line
field E ⊂ H. Any path γ ∈ P carries a tautological lift to PTΣ
that lifts γ to its curve of tangents,

γ̃ := {Tpγ : p ∈ γ} ⊂ PTΣ.

The tangent lines to the lifted curves define a line field F ⊂ H
complementary to E, i.e.,

H = E⊕ F .



Abstract definition of a path geometry

Definition
A path geometry (on a surface) is a triple (M;E,F) comprising
a smooth 3-manifold M and line fields E,F ⊂ TM together
spanning a contact distribution. The dual (path geometry) of
(M;E,F) is (M;F,E).

By construction:
I Σ is the (local) space of integral curves of E, and
I Σ∗ is the (local) space of integral curves of F.

M

Σ Σ∗
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The flat model reimagined

We can identify the space of lines in P2 with P∗2, so the underlying
3-manifold is PTP2 ∼= PTP∗2 ∼= V12, where

V12 = {(p, `) ∈ P2 × P∗2 : p ∈ `} ⊂ P2 × P∗2.

V12

P2 P∗2

(p, `)

p `

The complementary line fields E,E∗ are the vertical subbundles of
the projections V12 → P2,V12 → P∗2, respectively, that is, the flat
model is (V12;E,E∗).
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The flat model expressed as a correspondence space

The standard action of PSL3 on R3 induces a transitive action on
V12 that preserves the line fields, so (V12;E,E∗) is homogeneous,
and in fact Aut(V12;E,E∗) = PSL3.

The stabilizers of p, ` in PSL3 are parabolic subgroups P1,P2,
respectively, so we can regard the above as a correspondence space
diagram:

PSL3 /(P1 ∩ P2)

PSL3 /P1 PSL3 /P2

.
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2nd-order o.d.e.s
I N.b. our newer definition is somewhat broader than the

provisional one: It allows for paths through p ∈ Σ to be
defined only for an open subset of directions in PTpΣ.

Example (2nd-order o.d.e.s)

Any 2nd-order o.d.e. y ′′ = F (x , y , y ′) determines a path geometry

(R3
xyp; span{∂p}, span{Dx}),

where R3
xyp = J1(R,R) and Dx := ∂x + p∂y + F∂p. All (M;E,F)

(locally) arise this way for some F . Here, Σ = R2
xy = J0(R,R).

A
point transformation (x , y) 7→ (x̄ , ȳ) of variables corresponds to
an equivalence of path geometries, so

path geometries
(locally)↔ 2nd-order o.d.e.s modulo

point transformations.
One o.d.e. (locally) realizing the flat model is y ′′ = 0 (i.e.,
F (x , y , p) = 0).
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Chains on CR structures

Any 3-dimensional CR structure carries a canonical 4-parameter
family of curves called chains; exactly 1 chain passes through each
tangent direction transverse to the underlying contact distribution.

I Analog of geodesics in Riemannian geometry.
I Introduced by Cartan when solving equivalence problem.
I One of the best-known examples of canonical curves in the

sense of parabolic geometry.
The Fefferman construction assigns to a Levi-nondegenerate
hypersurface-type CR structure on a manifold M

I an SO(2,R)-bundle N → M, and
I a canonical Lorentzian conformal structure c on N.

Chains are the exactly projections of the (nonvertical) null
geodesics of (N, c) to M.
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Chains on path geometries

For 3-dimensional path geometries the story is analogous: A
Fefferman-type construction canonically assigns to a 3-dimensional
path geometry (M;E,F)

I a SO(1, 1)-bundle N → M, and
I a canonical signature-(2, 2) conformal structure c on N.

Proposition (Nurowski–Sparling, ’03)

For the path geometry determined by y ′′ = F (x , y , y ′), the
Fefferman conformal structure c on N is [g ], where

g = −dx(dp−F dx)+
1
6

(dy−p dx)[4Fp dx+Fpp(dy−p dx)−4dτ ],

where τ is the standard coordinate on R ∼= SO(1, 1).
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Proposition (Bor–W)

The chains of the path geometry corresponding to a 2nd order
o.d.e. y ′′ = f (x , y , y ′) are the curves in J1(R,R) which are the
graphs of solutions (y(x), p(x)) of the system

y ′′ = F + Fp∆ +
1
2
Fpp∆2 +

1
6
Fppp∆3

p′′ = −2(p′ − F )2

∆
+ Fp(3p′ − 2F ) + Fx + pFy

+
[
Fpp(p′ − F ) + 2Fy

]
∆

+
1
6
[
Fppp(p′ − 2F )− Fxpp − pFypp + 4Fyp)

]
∆2

,

where ∆ := y ′ − p.

Proof (sketch).

Compute null geodesics of g , use nullity to eliminate τ̇ , then
eliminate the parameter.
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A chain characterization of projective path geometries
Theorem (Bor–W)

A path geometry P on a surface Σ is projective if and only if all
chains on PTΣ project to paths in P.

Proof (sketch).

The statement is local, so we may as well work with the path
geometry defined by an o.d.e. y ′′ = F (x , y , y ′), i.e., a function
F (x , y , p). It’s well-known that such a path geometry is projective
iff ∂4

pF ≡ 0. So, we must show that every solution (y(x), p(x)) of
the geodesic system satisfies F (x , y , y ′) iff F is a polynomial of
degree ≤ 3 in p. But the right-hand side of the geodesic equation
in y ′′ is just the cubic Taylor polynomial of F (x , y , y ′) in p.

There is surely a less violent proof using the parabolic machinery
concerning correspondence spaces and canonical curves (see Čap &
Slovak, §§4.4, 5.3), and it may well generalize to other types of
parabolic geometries.
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Homogeneous path geometries

The homogeneous path geometries were (locally) classified by
Tresse, and the real case can be deduced therefrom; a real list
exists but is (to my knowledge) unpublished.

Theorem (Tresse, 1896)

If the (local) symmetry group of a homogeneous path geometry is
> 3, then it is locally equivalent to the flat model, and hence it is
locally equivalent to a left-invariant path geometry on a Lie group.

In particular,
I we can locally specify a homogeneous path geometry up by the

data (h; e, f), where h is the Lie algebra of the (local)
symmetry group and e, f ⊂ h are 1-dimensional subspaces
satisfying [e, f] 6⊂ e⊕ f, and

I computing the chains amounts to computing null geodesics of
a left-invariant metric in 4D.
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Chains of the flat model
Goal: Identify the chains of the flat model.
We can realize the flat model as

h3 :=
{( · x1 x3

· · x2
· · ·

)}
, e :=

{( · ∗ ·
· · ·
· · ·

)}
, f :=

{( · · ·
· · ∗
· · ·

)}
.

The affine plane
{( ∗
∗
1

)}
↔ R2 is H3-invariant, and H3 acts freely

and transitively on the incident pairs (q, `) of points q ∈ R2 and
nonvertical lines ` ⊂ R2.
Conformal structure c = [g ] on G := H3 × SO(1, 1):

g = θ1θ2 +
2
3
θ3θ4, θ4: a l.-i. form on SO(1, 1)

We compute the null solutions of the Euler equations (geodesic
flow on T ∗G left-translated to T ∗I G

∼= g∗).
The geodesic flow on T ∗G projects via left translation to the Euler
equations on g∗,

Ṗ = ad∗A−1P P = {H,P} , where h :=
1
2

(P,A−1P).



Chains of the flat model (cont.)
Inertia operator: A : g 7→ g∗, A =

( · 3 · ·
3 · · ·
· · · 2
· · 2 ·

)
. Euler equation for

X = (x1, . . . , x4) ∈ g:

ẋ1 =
2
3
x1x4, ẋ2 = −2

3
x2x4, ẋ3 = ẋ4 = 0.

The general null (H = 0) solution is

x1 = aect , x2 = be−ct , x3 = −ab

c
, x4 =

3c
2
.

So, for a null geodesic g =

( 1 z y
· 1 x
· · 1

s

)
: R→ G ,

X := g−1ġ : R→ g satisfies

ẋ = x2 = be−ct , ẏ − ẋz = x3 = −ab

c
, ż = x1 = aect .

By l.-i. we may as well take g(0) = I ∈ H3, and solving explicitly
gives that (x , y) traces a straight line in R2.



Interpreting the previous characterization gives:

Proposition (Bor–W)

1. For any non-incident (p0, `0) ∈ P2 × P∗2 (i.e., p0 6∈ `0,
equivalently, (p0, `0) 6∈ V12), the locus

{(p, `) ∈ V12 : p ∈ `0, p0 ∈ `}

is a chain of the flat model (V12,E,E∗), and
2. all chains arise as such loci; in particular there is a bijection

{chains on V12} ↔ (P2 × P∗2) \ V12.

Figure: Chains of the flat path geometry (straight lines).



Hooke ellipses

Recall that the Hooke ellipses are the ellipses in R2 of area (say)
π centered at the origin
Hooke ellipses:

H := SL2, e := {( · 1· · )} , f :=
{( · −1

1 ·
)}
.

Realizable by y ′′ = (xy ′ − y)3.

We can proceed as before to find the chains on H. Since (H;E,F)
is projective, the projections of the chains to Σ = R2 \ {(0, 0)} are
just the Hooke ellipses.



Horocycles vis-à-vis Hooke ellipses

Recall that horocycles are circles (interior-)tangent to a fixed
circle, say, the boundary ∂D of D.

H := SL2, e :=
{( · −1

1 ·
)}
, f := {( · 1· · )} .

Realizable by y ′′ = y ′+[1+(y ′)2]3/2

x .

This path geometry is dual to that of the Hooke ellipses, so:
I The set of Hooke ellipses passing through a fixed point

(x , y) ∈ R2 \ {(0, 0)} can be canonically identified with a
horocycle.

I The set of horocycles passing through a fixed point z ∈ D can
be canonically identified with a Hooke ellipse.

I The projections of the chains of the horocycles can be
obtained by projecting the chains of the Hooke ellipses in the
other direction.



Projections of chains of horocycles
SL2

R2 \ {(0, 0)} D

The horocycle path geometry is not projective, so its chains are not
horocycles. Instead, in the upper half-plane model:

(x2 +y2)2− [4cx+(c2 +4)y ](x2 +y2)+(6c2−2)x2 +2c3xy +6y2

− 4c(c2 − 1)x − (c4 − 3c2 + 4)y + (c2 − 1)2 = 0

These curves are examples of rational bicircular quartics (inversions
of conics w.r.t. circles), studied by Casey in the 1870s.



Some further questions:
I Is there a purely geometric characterization of the projections

of the horocycle chains to D?
I Is there a geometric characterization of the projections of

chains of circles of fixed radius?
I Do the chains of any other homogeneous path geometries have

interesting projections?
I For higher dimensions, the appropriate generalization of path

geometries on surfaces is to Lagrangean contact structures;
what can we say in higher dimensions?

I What are the analogues of the chain characterization of
projective path geometries to other correspondence
constructions, esp. in the setting of canonical curves in
parabolic geometry?



Thank you.

Congratulations and happy birthday to Robin Graham!


