Portfolio item number 1
Short description of portfolio item number 1
Short description of portfolio item number 1
Short description of portfolio item number 2
T. Willse, "Parallel tractor extension and metrics of split $G_2$ holonomy," University of Washington Ph.D. thesis (2011).
(pdf)
C.R. Graham, T. Willse, "Subtleties concerning conformal tractor bundles," J. Differential Geom. 92(3) (2012): 1721–1732. doi:10.2478/s11533-012-0093-8 arXiv:1201.2670
(degruyter.com | arXiv:1201.2670)
C.R. Graham, T. Willse, "Parallel tractor extension and ambient metrics of holonomy split $G_2$," J. Differential Geom. 92(3) (2012): 463–506. doi:10.4310/jdg/1354110197 arXiv:1109.3504
(projecteuclid.org | arXiv:1109.3504)
T. Willse, "Highly symmetric $2$-plane fields on $5$-manifolds and $5$-dimensional Heisenberg group holonomy," Differential Geom. Appl. 33 (Supp.) (2014): 81–111. doi:10.1016/j.difgeo.2013.10.010 arXiv:1302.7163
(sciencedirect.com | arXiv:1302.7163)
M.H. Walczak, A.C. Mix, T. Willse, A. Slagle, J.S. Stoner, J. Jaeger, S. Gulick, L. LeVay, Arata Kioka, the IODP Expedition 341 Scientific Party, "Correction of non-intrusive drill core physical properties data for variability in recovered sediment volume," Geophys. J. Int. 202(2) (2015): 1317–1323. doi:10.1093/gji/ggv204
(academic.oup.com)
K. Sagerschnig, T. Willse, "The Geometry of Almost Einstein $(2, 3, 5)$ Distributions," Symmetry Integrability Geom. Methods Appl. 13(4) (2017): 56 pp. doi:10.3842/SIGMA.2017.004 arXiv:1201.2670
(emis.de | arXiv:1201.2670)
K. Sagerschnig, T. Willse, "The almost Einstein operator for $(2, 3, 5)$ distributions," Arch. Math. (Brno) 53(5) (2017): 347–370. doi:10.5817/AM2017-5-347 arXiv:1705.00996
(dml.cz | arXiv:1705.00996)
A.R. Gover, R. Panai, T. Willse, "Nearly Kähler Geometry and $(2,3,5)$-Distributions via Projective Holonomy," Indiana Univ. Math. J. 66(4) (2017): 1351–1416. doi:10.1512/iumj.2017.66.6089 arXiv:1403.1959
(iumj.indiana.edu | arXiv:1403.1959)
T. Willse, "Cartan's incomplete classification and an explicit ambient metric of holonomy $G_2^*$," Eur. J. Math 4 (2018): 622–638. doi:10.1007/s40879-017-0178-9 arXiv:1411.7172
(springer.com | arXiv:1411.7172)
T. Willse, "Homogeneous real $(2, 3, 5)$ distributions with isotropy," Symmetry Integrability Geom. Methods Appl. 15(8) (2019): 28 pp. doi:10.3842/SIGMA.2019.008 arXiv:1807.02734
(emis.de | arXiv:1807.02734)
A.R. Gover, K. Neusser, T. Willse, "Projective geometry of Sasaki–Einstein structures and their compactification," Dissertationes Math. 546 (2019): 1–64 doi:10.4064/dm786-7-2019 arXiv:1803.09531
(impan.pl | arXiv:1803.09531)
G. Bor, T. Willse, "Chains of path geometries on surfaces: theory and examples," Israel J. Math (to appear). arXiv:2201.09141
(arXiv:2201.09141)
A.R. Gover, K. Neusser, "Projective geometry of $3$-Sasaki structures," (submitted). arXiv:2204.08384
(arXiv:2204.08384)
Slides; article: The Geometry of Almost Einstein $(2, 3, 5)$ Distributions
Slides; article: Projective geometry of Sasaki–Einstein structures and their compactification
Slides; articles: Nearly Kähler geometry and $(2, 3, 5)$-distributions via projective holonomy, Projective geometry of Sasaki–Einstein structures and their compactification
Slides; article: Chains of path geometries on surfaces: theory and examples
This is a description of a teaching experience. You can use markdown like any other post.
This is a description of a teaching experience. You can use markdown like any other post.