### Page Not Found

Page not found. Your pixels are in another canvas.

A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.

Page not found. Your pixels are in another canvas.

About me

This is a page not in th emain menu

This post will show up by default. To disable scheduling of future posts, edit `config.yml`

and set `future: false`

.

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Short description of portfolio item number 1

Short description of portfolio item number 2

T. Willse, "Parallel tractor extension and metrics of split $G_2$ holonomy," *University of Washington Ph.D. thesis* (2011).

(pdf)

C.R. Graham, T. Willse, "Subtleties concerning conformal tractor bundles," *J. Differential Geom.* **92**(3) (2012): 1721–1732. doi:10.2478/s11533-012-0093-8 arXiv:1201.2670

(degruyter.com | arXiv:1201.2670)

C.R. Graham, T. Willse, "Parallel tractor extension and ambient metrics of holonomy split $G_2$," *J. Differential Geom.* **92**(3) (2012): 463–506. doi:10.4310/jdg/1354110197 arXiv:1109.3504

(projecteuclid.org | arXiv:1109.3504)

T. Willse, "Highly symmetric $2$-plane fields on $5$-manifolds and $5$-dimensional Heisenberg group holonomy," *Differential Geom. Appl.* **33** (Supp.) (2014): 81–111. doi:10.1016/j.difgeo.2013.10.010 arXiv:1302.7163

(sciencedirect.com | arXiv:1302.7163)

M.H. Walczak, A.C. Mix, T. Willse, A. Slagle, J.S. Stoner, J. Jaeger, S. Gulick, L. LeVay, Arata Kioka, the IODP Expedition 341 Scientific Party, "Correction of non-intrusive drill core physical properties data for variability in recovered sediment volume," *Geophys. J. Int.* **202**(2) (2015): 1317–1323. doi:10.1093/gji/ggv204

(academic.oup.com)

K. Sagerschnig, T. Willse, "The Geometry of Almost Einstein $(2, 3, 5)$ Distributions," *Symmetry Integrability Geom. Methods Appl.* **13**(4) (2017): 56 pp. doi:10.3842/SIGMA.2017.004 arXiv:1201.2670

(emis.de | arXiv:1201.2670)

K. Sagerschnig, T. Willse, "The almost Einstein operator for $(2, 3, 5)$ distributions," *Arch. Math. (Brno)* **53**(5) (2017): 347–370. doi:10.5817/AM2017-5-347 arXiv:1705.00996

(dml.cz | arXiv:1705.00996)

A.R. Gover, R. Panai, T. Willse, "Nearly Kähler Geometry and $(2,3,5)$-Distributions via Projective Holonomy," *Indiana Univ. Math. J.* **66**(4) (2017): 1351–1416. doi:10.1512/iumj.2017.66.6089 arXiv:1403.1959

(iumj.indiana.edu | arXiv:1403.1959)

T. Willse, "Cartan's incomplete classification and an explicit ambient metric of holonomy $G_2^*$," *Eur. J. Math* **4** (2018): 622–638. doi:10.1007/s40879-017-0178-9 arXiv:1411.7172

(springer.com | arXiv:1411.7172)

T. Willse, "Homogeneous real $(2, 3, 5)$ distributions with isotropy," *Symmetry Integrability Geom. Methods Appl.* **15**(8) (2019): 28 pp. doi:10.3842/SIGMA.2019.008 arXiv:1807.02734

(emis.de | arXiv:1807.02734)

A.R. Gover, K. Neusser, T. Willse, "Projective geometry of Sasaki–Einstein structures and their compactification," *Dissertationes Math.* **546** (2019): 1–64 doi:10.4064/dm786-7-2019 arXiv:1803.09531

(impan.pl | arXiv:1803.09531)

G. Bor, T. Willse, "Chains of path geometries on surfaces: theory and examples," *Israel J. Math* (to appear). arXiv:2201.09141

(arXiv:2201.09141)

A.R. Gover, K. Neusser, "Projective geometry of $3$-Sasaki structures," (submitted). arXiv:2204.08384

(arXiv:2204.08384)

Slides; article: The Geometry of Almost Einstein $(2, 3, 5)$ Distributions

Slides; article: Projective geometry of Sasaki–Einstein structures and their compactification

Slides; articles: Nearly Kähler geometry and $(2, 3, 5)$-distributions via projective holonomy, Projective geometry of Sasaki–Einstein structures and their compactification

Slides; article: Chains of path geometries on surfaces: theory and examples

This is a description of a teaching experience. You can use markdown like any other post.

This is a description of a teaching experience. You can use markdown like any other post.